Cho tam giác ABC có AB=6cm, AC=4cm. Trên AB lấy M sao cho AM=1,5. Trên AC lấy N sao cho CN=3cm.
a) CM: MN//BC.
b) Từ N kẻ đường thẳng song song với AB cắt BC tại P. Chứng minh tam giác AMN đồng dạng với tam giác NPC.
c) Tính tỉ số diện tích của tam giác ANP và tam giác ABP
Chỉ cần giúp mình câu c thôi ạ.
Mình cảm ơn
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)