A = 111......1222......2 (2015 số 1 ;2015 số 2)\
Chứng minh rằng :A là tích của 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\underbrace{11....1}_{n}=a\) \(\Rightarrow 1\underbrace{00....0}_{n}=9a+1\Leftrightarrow 9a+1=10^n\)
\(\Rightarrow a=\frac{10^n-1}{9}\). Áp dụng công thức này vào biểu thức M:
Ta có: \(M=\underbrace{11....1}_{2015}\underbrace{2222....2}_{2015}=\underbrace{11....1}_{2015}\underbrace{00....0}_{2015}+\underbrace{22....2}_{2015}\)
\(=\frac{10^{2015}-1}{9}.10^{2015}+2.\frac{10^{2015}-1}{9}\)
\(=\frac{(10^{2015}-1)(10^{2015}+2)}{9}\)
Ta thấy \(\underbrace{11...1}_{2015}=\frac{10^{2015}-1}{9}\in\mathbb{N}\Rightarrow 10^{2015}-1\vdots 3\)
Đặt \(10^{2015}-1=3k(k\in\mathbb{N})\Rightarrow M=\frac{3k(3k+3)}{9}=k(k+1)\) là tích hai số tự nhiên liên tiếp.
Do đó ta có đpcm.
111....1222...2=1111....1.102015+2.1111....1(2015 chữ số 1)
=111...1.(102015+2) (2015 chữ số 1)
Nhận xét ta thấy:102015=999...9+1 (2014 chữ số 9)
=9.1111....1+1 (2014 chữ số 1)
Đặt A=111....1⇒111..1222...2=A.(9A+1+2)=A.(9A+3)=3A.(3A+1)
Mà 3A và 3A+1 là hai số tự nhiên liên tiếp nên
111....1222...2 có thể biểu diễn dưới dạng tích của hai số tự nhiên liên tiếp (đpcm)
Nhớ tick cho mình nha !!!!!!!!!!!!!!!
3x4 | 12 |
33x34 | 1122 |
333x334 | 111222 |
3333x3334 | 11112222 |
…………… | …………. |
Cho ta: A = 333…33 x 333…34 (mỗi thừa số có n chữ số)
333…33 và 333…34 là hai số tự nhiên liên tiếp.
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm