Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
111....1222...2=1111....1.102015+2.1111....1(2015 chữ số 1)
=111...1.(102015+2) (2015 chữ số 1)
Nhận xét ta thấy:102015=999...9+1 (2014 chữ số 9)
=9.1111....1+1 (2014 chữ số 1)
Đặt A=111....1⇒111..1222...2=A.(9A+1+2)=A.(9A+3)=3A.(3A+1)
Mà 3A và 3A+1 là hai số tự nhiên liên tiếp nên
111....1222...2 có thể biểu diễn dưới dạng tích của hai số tự nhiên liên tiếp (đpcm)
Nhớ tick cho mình nha !!!!!!!!!!!!!!!
Đặt 111...11=a (n chữ số 1)
=>10n=9a+1
=>111...1222...2=(111...1).10n+222....2
=a(9a+1)+2a
=9a2+a+2a
=9a2=3a
=3a(3a+1)
=> DPCM
a) 1122 = 11.100 + 22 = 11( 99 + 3 ) = 11( 11.9 + 3 ) = 33 ( 33 + 1 ) = 33.34
b) 111222 = 111.1000 + 222 = 111( 999 + 3 ) = 111 ( 111.9 + 3 ) = 333 ( 333 + 1 ) = 333.334
c) 111...1222...2 = 111...1 . 1000....0 + 222...22 = 111...1 ( 999...9 + 3 ) = 111...1 ( 1111...11.9 + 3 ) = 33...333 ( 333...33 + 1 ) = 333...33 . 333...34 ( số thứ nhất gồm có 50 chữ số 3, số thứ hai gồm có 49 chữ số 3 )
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
Lời giải:
Đặt \(\underbrace{11....1}_{n}=a\) \(\Rightarrow 1\underbrace{00....0}_{n}=9a+1\Leftrightarrow 9a+1=10^n\)
\(\Rightarrow a=\frac{10^n-1}{9}\). Áp dụng công thức này vào biểu thức M:
Ta có: \(M=\underbrace{11....1}_{2015}\underbrace{2222....2}_{2015}=\underbrace{11....1}_{2015}\underbrace{00....0}_{2015}+\underbrace{22....2}_{2015}\)
\(=\frac{10^{2015}-1}{9}.10^{2015}+2.\frac{10^{2015}-1}{9}\)
\(=\frac{(10^{2015}-1)(10^{2015}+2)}{9}\)
Ta thấy \(\underbrace{11...1}_{2015}=\frac{10^{2015}-1}{9}\in\mathbb{N}\Rightarrow 10^{2015}-1\vdots 3\)
Đặt \(10^{2015}-1=3k(k\in\mathbb{N})\Rightarrow M=\frac{3k(3k+3)}{9}=k(k+1)\) là tích hai số tự nhiên liên tiếp.
Do đó ta có đpcm.
câu này làm như bài của soyeon_Tiểubàng giải