Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. (O và O’ nằm ở hai nửa mặt phẳng bờ AB). Một đường thẳng qua A cắt đường tròn (O) và (O’) tương ứng tại C và D (A nằm giữa C và D). Các tiếp tuyến tại C và D của hai nửa đường tròn cắt nhau tại K. Nối KB cắt CD tại I. Kẻ IE // KD (E thuộc BD).
a) Chứng minh tam giác BOO’ và tam giác BCD đồng dạng.
b) Chứng minh tứ giác BCKD nội tiếp.
c) Chứng minh AE là tiếp tuyến của đường tròn (O; R).
d) Tìm vị trí của CD để diện tích tam giác BCD lớn nhất.