K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó:ΔAHC=ΔDHC

Suy ra: AC=DC

hay ΔACD cân tại C

c: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABD cân tại B

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

hayΔBDC vuông tại D

7 tháng 6 2021

Số đo bằng 60 độ hay 600 ạ

60 độ nhé 

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

a) Xét ΔAHC vuông tại H và ΔDHC vuông tại H có 

CH chung

HA=HD(gt)

Do đó: ΔAHC=ΔDHC(hai cạnh góc vuông)

b) Ta có: AH=HD(gt)

mà H nằm giữa A và D(gt)

nên H là trung điểm của AD

Xét ΔDAK có 

H là trung điểm của AD(gt)

C là trung điểm của KD(gt)

Do đó: HC là đường trung bình của ΔDAK(Định nghĩa đường trung bình của tam giác)

Suy ra: HC//AK và \(HC=\dfrac{AK}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay AK//BC(đpcm)

7 tháng 2 2020

Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath

19 tháng 4 2021

A B C 60 H

18 tháng 4 2021

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)

=> AH là đường trung tuyến (TC tam giác cân)

=> H à TĐ của BC 

=> BH = HC 

Xét tam giác AHB và tam giác AHC:

BH = HC (cmt)

^AHB = ^AHC (90o)

AH chung

=> tam giác AHB = tam giác AHC (ch - cgv)

b) Ta có: HA = HD (gt) => H là TĐ của AD

Xét tam giác ACD có:

CH là đường cao (CH vuông góc AD)

CH là trung tuyến (H là TĐ của AD)

=> tam giác ACD cân tại C

c) Xét tam giác ACD cân tại A có:

AD > AC + CD (Bất đẳng thức trong tam giác)

=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)

Mà  \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)

=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)

Bạn có thể giúp mik thêm 1 cái nx là vẽ hình đc ko bạn?

11 tháng 12 2018

hính tự vẽ nha

7 tháng 2 2020

Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)