K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

\(B=-2x^2-x+\frac{25}{8}=-\left(2x^2+x+\frac{1}{8}\right)+\frac{13}{4}=-\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Dấu = xảy ra khi:

\(\sqrt{2}x+\frac{1}{2\sqrt{2}}=0\)

\(\Leftrightarrow x=-\frac{1}{4}\)

15 tháng 10 2021

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

15 tháng 10 2021

còn 1 câu nữa ạ:((

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)

2) 

a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2

b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1

3)

\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)

b) 

th1: nếu x<-3/2 => B=-2x-3+2x+2=-1

th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5

ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)

th3: nếu x>-1 => B=2x+3-2x-2=1=>

Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

1 tháng 3 2016

giúp với mình sắp nạp rồi

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

1 tháng 7 2016

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN