K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

Ta có:

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

<=> \(uv+2v-3u-6=uv-2v+3u-6\)

<=> \(2v-3u=3u-2v\)

<=> \(2v+2v=3u+3u\)

<=> \(4v=6u\)

<=> \(2v=3u\)

<=> \(\frac{u}{2}=\frac{v}{3}\)

18 tháng 5 2016

Ta có:


\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

18 tháng 9 2016

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)

Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.

9 tháng 8 2016

Mình lí luận ngược nha :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

11 tháng 1 2017

Giải:

Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)

\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)

Vậy \(\frac{u}{2}=\frac{v}{3}\)

11 tháng 1 2017

thừa cái dòng chữ cuối cùng nhá

27 tháng 10 2016

Đại số lớp 7

27 tháng 10 2016

Hình như đề có bị lộn thì phải

11 tháng 8 2020

mình có sửa lại đề 1 chút!

đặt \(T=\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)

đặt \(u=a^4;v=b^6\)(a,b>0) ta có

\(T=\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}=\frac{a^4-8a^2b^2+4b^2}{a^2-2b^2+2ab}+3b^2\)

vậy \(T=\frac{a^4-8a^2b^2+4b^4}{a^2-2b^2+2ab}+3b^2=\frac{a^4-5a^2b^2-2b^4+6ab^3}{a^2-2b^2+2ab}=a^2-2ab+b^2\)

từ đó suy ra \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}\)

vì \(u^3\ge v^2\)nên \(\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}=\sqrt[4]{u}\)

\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)

với u=1 ta có \(T=\sqrt{\frac{1-8\sqrt[6]{v^2}+4\sqrt[3]{v^2}}{1-2\sqrt[3]{v}+2\sqrt[6]{v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}\)

nếu \(1-2\sqrt[3]{v}+2\sqrt[6]{v}=0\)thì \(\sqrt[3]{v}=\frac{3+1}{2}>0\)

do \(v^2>1=u^3\), mâu thuẫn suy ra \(1-2\sqrt[3]{v}+2\sqrt[6]{v}\ne0\)

tóm lại với \(u^3\ge v^2\)và u,v\(\inℚ^+\)để \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)cần và đủ là u=1 và v<1, v\(\inℚ^+\)được lấy tùy ý

19 tháng 5 2016

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Rightarrow\left(u+2\right).\left(v-3\right)=\left(u-2\right).\left(v+3\right)\)

\(\Rightarrow u\left(v-3\right)+2\left(v-3\right)=u\left(v+3\right)-2\left(v+3\right)\)

\(\Rightarrow uv-3u+2v-6=uv+3u-2v-6\Rightarrow uv-3u+2v=uv+3u-2v\)

\(\Rightarrow-3u+2v=3u-2v\Rightarrow2v-3u=3u-2v\Rightarrow2v+2v=3u+3u\Rightarrow4v=6u\Rightarrow\frac{u}{3}=\frac{v}{2}\)

17 tháng 1 2017

cm như bạn trên là  đúng đấy bạn ạ

18 tháng 7 2017

Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Theo tính chất dãy tỉ số , có :

\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)

\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)

\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)

18 tháng 7 2017

Ta có:

  \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> (u+2).(v-3)=(u-2).(v+3)

<=>uv+2v-3u-6=uv-2v+3u-6

<=>2v-3u=3u-2v

<=>2v+2v=3u+3u

<=>4v=6u

<=>2v=3u

<=>\(\frac{u}{2}=\frac{v}{3}\)

13 tháng 7 2020

Câu 1b sai rồi nhé cậu!

4k . 5k = 20

=> 20.k = 20

=> k = 20 : 20 = 1

13 tháng 7 2020

ơ cậu 4k . 5k = 20k^2 chứ ??

Thế k = 1 hoặc k =-1 mà ???

20 tháng 9 2019

Đặt \(ax^3=by^3=cz^3=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{k}{x^3}\\b=\frac{k}{y^3}\\c=\frac{k}{z^3}\end{matrix}\right.\)

Thay vào VT ta được :

\(VT=\sqrt[3]{x^2\cdot\frac{k}{x^3}+y^2\cdot\frac{k}{y^3}+z\cdot\frac{k}{z^3}}=\sqrt[3]{\frac{k}{x}+\frac{k}{y}+\frac{k}{z}}\)

\(=\sqrt[3]{k\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt[3]{k}\) (1)

Thay vào VP ta được :

\(VP=\sqrt[3]{\frac{k}{x^3}}+\sqrt[3]{\frac{k}{y^3}}+\sqrt[3]{\frac{k}{z^3}}=\frac{\sqrt[3]{k}}{x}+\frac{\sqrt[3]{k}}{y}+\frac{\sqrt[3]{k}}{z}=\sqrt[3]{k}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\sqrt[3]{k}\) (2)

Từ (1) và (2) \(\Rightarrow VT=VP\)

Ta có đpcm.

20 tháng 9 2019

Ta có: \(ax^3+by^3+cz^3=\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}\)

\(ax^3=by^3=cz^3\)

\(\Rightarrow ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=ax^3\)

\(\Rightarrow\sqrt[3]{ax^3+by^3+cz^3}=x\sqrt[3]{a}\\ \Leftrightarrow\frac{\sqrt[3]{ax^3+by^3+cz^3}}{x}=\sqrt[3]{a}\\ \Leftrightarrow\sqrt[3]{ax^3+by^3+cz^3}.\frac{1}{x}=\sqrt[3]{a}\)

Tương tự, ta có:

\(\sqrt[3]{ax^3+by^3+cz^3}.\frac{1}{y}=\sqrt[3]{b}\)

\(\sqrt[3]{ax^3+by^3+cz^3}.\frac{1}{z}=\sqrt[3]{c}\)

Cộng vế theo vế các đẳng thức, ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\sqrt[3]{ax^3+by^3+cz^3}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\\ =\sqrt[3]{ax^3+by^3+cz^3}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\left(đpcm\right)\)

Chúc bạn học tốt!