K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

Ta có:

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

<=> \(uv+2v-3u-6=uv-2v+3u-6\)

<=> \(2v-3u=3u-2v\)

<=> \(2v+2v=3u+3u\)

<=> \(4v=6u\)

<=> \(2v=3u\)

<=> \(\frac{u}{2}=\frac{v}{3}\)

18 tháng 5 2016

Ta có:


\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

18 tháng 9 2016

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)

Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.

9 tháng 8 2016

Mình lí luận ngược nha :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

11 tháng 1 2017

Giải:

Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)

\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)

Vậy \(\frac{u}{2}=\frac{v}{3}\)

11 tháng 1 2017

thừa cái dòng chữ cuối cùng nhá

27 tháng 10 2016

Đại số lớp 7

27 tháng 10 2016

Hình như đề có bị lộn thì phải

19 tháng 5 2016

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Rightarrow\left(u+2\right).\left(v-3\right)=\left(u-2\right).\left(v+3\right)\)

\(\Rightarrow u\left(v-3\right)+2\left(v-3\right)=u\left(v+3\right)-2\left(v+3\right)\)

\(\Rightarrow uv-3u+2v-6=uv+3u-2v-6\Rightarrow uv-3u+2v=uv+3u-2v\)

\(\Rightarrow-3u+2v=3u-2v\Rightarrow2v-3u=3u-2v\Rightarrow2v+2v=3u+3u\Rightarrow4v=6u\Rightarrow\frac{u}{3}=\frac{v}{2}\)

17 tháng 1 2017

cm như bạn trên là  đúng đấy bạn ạ

18 tháng 7 2017

Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Theo tính chất dãy tỉ số , có :

\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)

\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)

\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)

18 tháng 7 2017

Ta có:

  \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> (u+2).(v-3)=(u-2).(v+3)

<=>uv+2v-3u-6=uv-2v+3u-6

<=>2v-3u=3u-2v

<=>2v+2v=3u+3u

<=>4v=6u

<=>2v=3u

<=>\(\frac{u}{2}=\frac{v}{3}\)

13 tháng 7 2020

Câu 1b sai rồi nhé cậu!

4k . 5k = 20

=> 20.k = 20

=> k = 20 : 20 = 1

13 tháng 7 2020

ơ cậu 4k . 5k = 20k^2 chứ ??

Thế k = 1 hoặc k =-1 mà ???

20 tháng 11 2019

\(B=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\\ \Leftrightarrow B=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\\ \Leftrightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\\ \Leftrightarrow B=1-\frac{1}{100}< 1\left(tmđk\right)\)

20 tháng 11 2019

Trần Quốc Tuấn hi mk tag giùm nhé :

Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 và Akai Haruma