Tìm phân số a/b thỏa mãn điều kiện 4/7< a/b <2/3 và 7a + 4b = 1994
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\dfrac{a}{b}\)>4/7 => a,b cùng dấu. Mà 7a+4b = 1994 => a,b ⊂ N*
4/7<a/b<2/3
⇔ 28/7=4<7a/b<14/3
Thay 7a = 1994 -4b vào BĐT trên, ta được:
4<1194/b-4<14/3
⇔8<1994/b<26/3
Vì b ⊂N* ⇒ \(\left\{{}\begin{matrix}b< \dfrac{1994}{8}=249\dfrac{1}{4}\\b>\dfrac{3.1994}{26}=230\dfrac{1}{13}\end{matrix}\right.\)
⇒ 231≤b≤249
Mặt khác 7a = 1994-4b ⇒1994-4b⋮7, mà 1994 chia 7 dư 6, suy ra 4b chia 7 dư 6, 2b chia 7 dư 3, b chia 7 dư 5.
Suy ra \(b\in\left\{236;243\right\}\)
+ Với b= 236 ⇒ a= 150
+Với b= 243 ⇒ a = 146
Vậy phân số a/b cần tìm là \(\dfrac{150}{236};\dfrac{146}{243}\)
\(\dfrac{4}{9}< \dfrac{a}{b}\left(b\ne0\right)< \dfrac{10}{21}\\ \Rightarrow\dfrac{21}{63}< \dfrac{a}{b}< \dfrac{30}{63}\)
\(\Rightarrow\left\{{}\begin{matrix}21< a< 30\\b=63\end{matrix}\right.\)
Lại có : 5a-2b=3
=> 5a=3+2.63
=> 5a=129
=> a=129/5 (thỏa mãn)
Khi đó : \(\dfrac{a}{b}=\dfrac{\dfrac{129}{5}}{63}\)
a)\(\frac{2}{7}\)= \(\frac{4}{14}\)= \(\frac{6}{21}\)=\(\frac{8}{28}\)= ...
vì 5 < y < 29 \(\Rightarrow\)\(\frac{x}{y}\)= \(\frac{4}{14}\)= \(\frac{6}{21}\)= \(\frac{8}{28}\)
b)\(\frac{28}{8}\)= \(\frac{7}{2}\)= \(\frac{14}{4}\)= \(\frac{21}{6}\)= \(\frac{35}{10}\)= ...
vì 1 < y < 10\(\Rightarrow\)\(\frac{x}{y}\)= \(\frac{14}{4}\)= \(\frac{21}{6}\)
không nhớ lắm nhưng hình như là bạn nhân 2 , 3 , 4 ,..., 100
để tìm ra
mik ko nhớ nha sr
tích trước trả lời sau