35x <351
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tính tổng sau: A = 8+15+22+29+...+351
b) tính tổng của tất cả các số tự nhiên lẻ x , biêt 12 < x < 91
a) A có số số hạng là
(351 - 8) : 7 +1 = 50 ( số hạng )
Tổng A là :
( 8 +351 ) .50 : 2 = 3975
b) Các số tự nhiên lẻ x đó là : 13 ;15 ; 17; ....;89
Dãy số tự nhiên trên có số số hạng là
( 89-13) :2 +1 = 39 ( số hạng )
Tổng là : (13+89).39 :2 = 1989
a) Khoảng cách là:
15 - 8 = 7
Số các số hạng là:
(351 - 8) : 7 + 1 = 50
Tổng của dãy A là:
(351 + 8) x 50 : 2 = 8975
Đáp số : 8975
b) Các số x là : 13;15;17;...;89
Khoảng cách là:
15 - 13 = 2
Số các số hạng là:
(89 - 13) : 2 + 1 = 39 số
Tổng là:
(89 + 13) x 39 : 2 = 1989
Đáp số : 1989
Ta có : \(6x^4-35x^3+62x^2-35x+6=0\)
=> \(6x^4-3x^3-32x^3+16x^2+46x^2-23x-12x+6=0\)
=> \(3x^3\left(2x-1\right)-16x^2\left(2x-1\right)+23x\left(2x-1\right)-6\left(2x-1\right)=0\)
=> \(\left(3x^3-16x^2+23x-6\right)\left(2x-1\right)=0\)
=> \(\left(3x^3-x^2-15x^2+5x+18x-6\right)\left(2x-1\right)=0\)
=> \(\left(x^2\left(3x-1\right)-5x\left(3x-1\right)+6\left(3x-1\right)\right)\left(2x-1\right)=0\)
=> \(\left(x^2-5x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x^2-2x-3x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x\left(x-2\right)-3\left(x-2\right)\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-2=0\\3x-1=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=2\\x=\frac{1}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{2,3,\frac{1}{2},\frac{1}{3}\right\}\)
Nhận thấy \(x=0\) ko là nghiệm, chia 2 vế của pt cho \(x^2\)
\(6x^2+\frac{6}{x^2}-35x-\frac{35}{x}+62=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)-35\left(x+\frac{1}{x}\right)+62=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(6\left(t^2-2\right)-35t+62=0\)
\(\Leftrightarrow6t^2-35t+50=0\Rightarrow\left[{}\begin{matrix}t=\frac{5}{2}\\t=\frac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=\frac{10}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-5x+2=0\\3x^2-10x+3=0\end{matrix}\right.\)
Bài 2:
1) \(7x^2+2x=0\)
\(\Leftrightarrow x\left(7x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\7x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{7}\end{matrix}\right.\)
2) \(2x\left(x-9\right)+5\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{5}{2}\end{matrix}\right.\)
3) \(x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Bài 1:
2) \(24x-18y+30=6\left(4x-3y+5\right)\)
5) \(x^2+14x+49=\left(x+7\right)^2\)
6) \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
x=0
k mink nhé pạn