Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^4-7x^2+6\)
\(=x^4-x^2-6x^2+6\)
\(=x^2\left(x^2-1\right)-6\left(x^2-1\right)\)
\(=\left(x^2-6\right)\left(x^2-1\right)\)
\(=\left(x+\sqrt{6}\right)\left(x-\sqrt{6}\right)\left(x+1\right)\left(x-1\right)\)
\(b,x^4+2x^2-3=x^4+3x^2-x^2-3\)
\(=x^2\left(x^2+3\right)-\left(x^2+3\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2+3\right)\)
\(\Leftrightarrow x^3+x^2-2x+5x^2+5x-10=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)+5\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+2\right)\left(x-1\right)=0\)
b/ \(\Leftrightarrow x^3+5x^2+6x-x^2-5x-6=0\)
\(\Leftrightarrow x\left(x^2+5x+6\right)-\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(x^3+6x^2+3x-10=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+10x-10=0\)
\(\Leftrightarrow x^2\left(x-1\right)+7x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+5x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{1;-2;-5\right\}\)
\(x^3+4x^2+x-6=0\)
\(\Leftrightarrow x^3-x^2+5x^2-5x+6x-6=0\)
\(\Leftrightarrow x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+3x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{1;-2;-3\right\}\)
Phần a thành nhân tử sẵn rồi bạn:)
b,\(x^6-9x^3+8=x^6-x^3-8x^3+8\)
\(=x^3\left(x^3-1\right)-8\left(x^2-1\right)\)
\(=x^3\left(x-1\right)\left(x^2+x+1\right)-8\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^4-x^3-8x-1\right)\)
\(6x^2-7x+2=0\)
Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)
\(x^6-1=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)
Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)
\(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)
\(x^6-1=0\)
\(\Leftrightarrow x^6=1\)
\(\Leftrightarrow x=\pm1\)
Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)
\(x^4-6x^3+7x^2+6x-8=0\)
\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)
\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)
Vậy S={-1;1;2;4}
a. \(3x^2+2-1=0\)
\(\text{⇔}3x^2+1=0\)
\(\text{⇔}3x^2=-1\)
\(\text{⇔}x^2=\frac{-1}{3}\) (Vô lí)
Vậy phương trình trên vô nghiệm.
b. \(x^2-3x+2=0\)
\(\text{⇔}x^2-x-2x+2=0\)
\(\text{⇔}x\left(x-1\right)-2\left(x-1\right)=0\)
\(\text{⇔}\left(x-1\right)\left(x-2\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;2\right\}\).
c. \(x^2-4x+3=0\)
\(\text{⇔}x^2-x-3x+3=0\)
\(\text{⇔}x\left(x-1\right)-3\left(x-1\right)=0\)
\(\text{⇔}\left(x-1\right)\left(x-3\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\).
d. \(x^2+6x-16=0\)
\(\text{⇔}x^2-2x+8x-16=0\)
\(\text{⇔}x\left(x-2\right)+8\left(x-2\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+8\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{2;-8\right\}\).
Chúc bạn học tốt@@
Ta có : \(6x^4-35x^3+62x^2-35x+6=0\)
=> \(6x^4-3x^3-32x^3+16x^2+46x^2-23x-12x+6=0\)
=> \(3x^3\left(2x-1\right)-16x^2\left(2x-1\right)+23x\left(2x-1\right)-6\left(2x-1\right)=0\)
=> \(\left(3x^3-16x^2+23x-6\right)\left(2x-1\right)=0\)
=> \(\left(3x^3-x^2-15x^2+5x+18x-6\right)\left(2x-1\right)=0\)
=> \(\left(x^2\left(3x-1\right)-5x\left(3x-1\right)+6\left(3x-1\right)\right)\left(2x-1\right)=0\)
=> \(\left(x^2-5x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x^2-2x-3x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x\left(x-2\right)-3\left(x-2\right)\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-2=0\\3x-1=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=2\\x=\frac{1}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{2,3,\frac{1}{2},\frac{1}{3}\right\}\)
Nhận thấy \(x=0\) ko là nghiệm, chia 2 vế của pt cho \(x^2\)
\(6x^2+\frac{6}{x^2}-35x-\frac{35}{x}+62=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)-35\left(x+\frac{1}{x}\right)+62=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(6\left(t^2-2\right)-35t+62=0\)
\(\Leftrightarrow6t^2-35t+50=0\Rightarrow\left[{}\begin{matrix}t=\frac{5}{2}\\t=\frac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=\frac{10}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-5x+2=0\\3x^2-10x+3=0\end{matrix}\right.\)