Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
\(=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}\right)}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
\(=1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
Ta thấy \(1>\frac{1}{2}\) ; \(\frac{1}{3}>\frac{1}{4}\) ; ... ; \(\frac{1}{4041}>\frac{1}{4042}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}< 1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1\)
\(\Rightarrow1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1+1< 1+\frac{2021}{2020}=1\frac{2021}{2020}\)
\(\Rightarrow\frac{A}{B}< 1\frac{2021}{2020}\)
a) \(3\left(2x-x\right)=5x+1\)
\(\Leftrightarrow6x-3x=5x+1\)
\(\Leftrightarrow6x-3x-5x=1\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)
b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)
\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)
\(\Leftrightarrow x+2022=0\)
\(\Leftrightarrow x=-2022\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)
Đặt \(\sqrt{x-2019}=a,......\)
Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)
- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)
\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)
- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )
Vậy ...
thêm \(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2}\ne0\) nên nó z nha :Đ giải thích ấy
`<=>(x+1)/2021+1+(x+2)/2020+1+(x+3)/2019+1+(x+2028)/2-3=0`
`<=>(x+2022)/2021+(x+2022)/2020+(x+2022)/2019+(x+2022)/2=0`
`<=>(x+2022)(1/2021+1/2020+1/2019+1/2)=0`
`<=>x+2022=0`
`<=>x=-2022`
a) \(x\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).
b) \(\left(x-2020\right)\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).
c) \(\left(x-2021\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).
d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Xét tổng: \(A=1+3+5+...+99\)
Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).
Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow x=-50\).
Đặt 2020-x=a
Phương trình trở thành:
\(a^3+\left(a+1\right)^3-\left(2a+1\right)^3=0\)
\(\Leftrightarrow a^3+a^3+3a^2+3a+1-\left(8a^3+12a^2+6a+1\right)=0\)
\(\Leftrightarrow2a^3+3a^2+3a+1-8a^3-12a^2-6a-1=0\)
\(\Leftrightarrow-6a^3-9a^2-3a=0\)
\(\Leftrightarrow-3a\left(2a^2+3a+1\right)=0\)
\(\Leftrightarrow a\left(2a+1\right)\left(a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\2a+1=0\\a+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\2a=-1\\a=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{1}{2}\\a=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2020-x=0\\2020-x=-\dfrac{1}{2}\\2020-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{4041}{2}\\x=2021\end{matrix}\right.\)
Vậy: \(S=\left\{2020;\dfrac{4041}{2};2021\right\}\)