Tìm 2 chứ số tận cùng của 2^999 Và 3^999( làm theo phương pháp đồng dư)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=3(3+3^2+3^3+...+3^201)
3A=32+33+...+3202
3A-A=(32+33+...+3202)-(3+32+33+...+3201)
2A=3202-3
A=\(\frac{3^{202}-3}{2}\)
Ta có :
\(A=3+3^2+3^3+...............+3^{201}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+..........+\left(3^{199}+3^{200}\right)+3^{201}\)
\(\Rightarrow A=3.\left(1+3\right)+3^3.\left(1+3\right)+..........+3^{199}.\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+.........+3^{199}.4+3^{201}\)
\(\Rightarrow A=4.\left(3+3^3+.........+3^{199}\right)+3^{201}\)
Mà 3 đồng dư với -1 (mod 4)
\(\Rightarrow3^{201}\)đồng dư với 3 (mod 4)
=> A chia 4 dư 1
=> A = 4.k + 1 ( với \(k\in\) N* ) (1)
Gọi số cần tìm là ab7 ( a,b là chữ số; a khác 0 )
Nếu chuyển chữ số 7 tận cùng của số đó lên đầu ta được 7ab
Theo bài ra ta có:
ab7 x 2 + 21 = 7ab
( ab x 10 + 7 ) x 2 + 21 = 700 + ab
ab x 10 x 2 + 7 x 2 + 21 = 700 + ab
ab x 20 + 14 + 21 = 700 + ab
ab x 19 = 700 - 21 - 14
ab x 19 = 665
ab = 665 : 19
ab = 35
Vậy số cần tìm là 357
Gọi số cần tìm là ab7 theo đề bài ta có
2xab7 + 21 = 7ab => 20xab + 14 + 21 = 700 + ab => 19xab = 665 => ab = 665:19 = 35
=> số cần tìm là 357
Giải
Nhận xét : các số tự nhiên có số mũ dạng 4k + 1 thì luôn có giá trị bằng chính nó
Từ nhận xét trên ta xét tổng các chữ tận cùng của tổng các lũy thừa trên
Ta có tổng sau có chữ số tận cùng bằng tổng ban đầu
1 + 2 + 3 + 4 + 5 + 6 + ... + 2019 = 2019.(2019+1)/2
=2019.2020/2
Vì 2019.2020 có chữ số tận cùng bằng 0 nên 2019.2020/2 phải có chữ số tận cùng bằng 5
Vậy chữ số tận cùng của 1^5 + 2^5 + 3^5 + ... + 2019^5 là 5
Giải
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số
thứ hai là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ hai, số
thứ tư là chữ số tận cùng của tổng số thứ hai và số thứ ba. Cứ tiếp tục như thế
ta được dãy các số như sau : 1235831459437......
Trong dãy trên có xuất hiện số 2005 hay không ?
Xét 3999
Ta có: 320 đồng dư với (...01) (mod 100)
=> (320)49 đồng dư với (...01)49 (mod 100)
=> 3980 đồng dư với (...01) (mod 100)
Xét 319 đồng dư với 67 (mod 100)
=> 3980 . 319 đồng dư với (...01). (...67) (mod 100)
=> 3999 đồng dư với 67 (mod 100)
Vậy 2 chữ số tận cùng của 3999 là 67
Xét 2999
Ta có: 220 đồng dư với 76 (mod 100)
=> (220)49 đồng dư với (...76)49 (mod 100)
=> 2980 đồng dư với (...76) (mod 100)
Ta có: 219 đồng dư với (...88) (mod 100)
=> 2980 . 219 đồng dư với (...76) x (...88) (mod 100)
=> 2999 đồng dư với 88 (mod 100) => 2 chữ số tận cùng của 2999 là 88
thế này thì mình chịu