K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

\(S_{BDC}=\dfrac{8\times6}{2}=24\left(cm^2\right)\).

-Hạ BE vuông góc với DC tại E.

\(S_{BDC}=\dfrac{1}{2}\times BE\times DC\).

\(\Rightarrow\dfrac{1}{2}\times BE\times10=24\)

\(\Rightarrow BE\times5=24\)

\(\Rightarrow BE=24:5=4,8\left(cm\right)\).

\(S_{ABCD}=\dfrac{\left(AB+DC\right)\times BE}{2}=\dfrac{\left(5+10\right)\times4,8}{2}=36\left(cm^2\right)\)

11 tháng 8 2016

H

A)Diện tích hình thang ABCD là :

6 . ( 5 + 10 ) : 2 = 45 ( cm2 )

B) 6 cm

21 tháng 7 2023

a) Gọi \(\widehat{ADB}=\widehat{D_1;}\widehat{CDB}=\widehat{D_2}\)

Xét Δ vuông BDC ta có :

\(\)\(\widehat{D_2}+\widehat{C}=90^o\)

mà \(\widehat{D_2}=\dfrac{\widehat{D}}{2}\) (DB là phân giác \(\widehat{ADC}\))

     \(\widehat{C}=\widehat{D}\) (ABCD là hình thang cân)

\(\Rightarrow\dfrac{\widehat{D}}{2}+\widehat{D}=90^o\)

\(\Rightarrow\dfrac{\widehat{3D}}{2}=90^o\Rightarrow\widehat{D}=60^o\Rightarrow\widehat{C}=\widehat{D}=60^o\)

Ta lại có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

mà \(\left\{{}\begin{matrix}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{matrix}\right.\) (ABCD là hình thang cân)

\(\Rightarrow2\widehat{A}+2\widehat{C}=360^o\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2\widehat{C}}{2}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2.60^o}{2}=120^o\)

b) \(BC=AD=6\left(cm\right)\) (ABCD là hình thang cân)

Xét Δ vuông BDC ta có :

\(Cos60^o=\dfrac{BC}{DC}=\dfrac{1}{2}\)

\(\Rightarrow DC=2BC=2.6=12\left(cm\right)\)

\(DC^2=BD^2+BC^2\left(Pitago\right)\)

\(\Rightarrow BD^2=DC^2-BC^2=12^2-6^2=144-36=108=3.36\)

\(\Rightarrow BD=6\sqrt[]{3}\left(cm\right)\)

Kẻ đường cao AH và BE vuông góc DC tại H và E

Ta có : \(BE.CD=BD.BC\Rightarrow BE=\dfrac{CD}{BD.BC}=\dfrac{12}{6.6\sqrt[]{3}}=\dfrac{1}{3\sqrt[]{3}}\left(cm\right)\)

Xét Δ BEC ta có :

\(BC^2=BE^2+EC^2\Rightarrow EC^2=BC^2-BE^2=36-\dfrac{1}{27}\)

\(\Rightarrow EC^2=\dfrac{971}{27}\Rightarrow EC=\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)

ABHE là hình chữ nhật (AB \(//\) HE;AH \(//\) BE vì cùng vuông với CD; Góc H=90o )

\(\Rightarrow AB=HE=CD-2EC=12-\dfrac{2}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\) (tính chất hình thang cân)

Chu vi hình thang cân ABCD :

\(2BC+DC+AB=2.6+12+12-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}=36-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)

20 tháng 7 2023

A B C D E

a/

\(\widehat{ADB}=\widehat{CDB}=\dfrac{\widehat{ADC}}{2}\)  (gt)

Mà \(\widehat{ADC}=\widehat{BCD}\) (góc ở đáy hình thang cân)

\(\Rightarrow\widehat{CDB}=\dfrac{\widehat{BCD}}{2}\)

Xét tg vuông BCD có

\(\widehat{CDB}+\widehat{BCD}=90^o\Rightarrow\dfrac{\widehat{BCD}}{2}+\widehat{BCD}=90^o\Rightarrow\widehat{BCD}=60^o\)

\(\Rightarrow\widehat{CDB}=\dfrac{\widehat{BCD}}{2}=\dfrac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{ADC}=\widehat{BCD}=60^o\)

Ta có

\(\widehat{DAB}=\widehat{ABC}\) (góc ở đáy hình thang cân)

\(\widehat{DAB}=180^o-\widehat{ADC}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{DAB}=\widehat{ABC}=120^o\)

b/ Từ B dựng đường thẳng // AD cắt CD tại E ta có

AB // CD => AD//DE mà BE//AD

=> ABED là hình bình hành

=> BE = AD mà AD = BC (cạnh bên hình thang cân)

=> BE = AD = BC = 6 cm

Xét tg BCE có

BE = BC => tg BCE cân tại B

\(\Rightarrow\widehat{BEC}=\widehat{BCD}=60^o\Rightarrow\widehat{CBE}=60^o\) => tg BCE là tg giác đều

=> BE = CE = BC = 6 cm

Xét tg vuông BCD có

\(\widehat{CDB}=30^o\) (cmt) => \(BC=\dfrac{CD}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)

\(\Rightarrow CD=2BC=2.6=12cm\)

\(\Rightarrow DE=CD-CE=12-6=6cm\)

Mà DE = AB = 6 cm (cạnh đối hbh ABED)

\(\Rightarrow C_{ABCD}=AB+BC+CD+AD=6+6+12+6=30cm\)

 

Ta có DB là tia pgiac của \(\widehat{ADC}\)

Mà \(\widehat{ADC}=\widehat{BCD}\) do 2 góc là góc đáy của hình thang

=>\(\widehat{BDC}=\widehat{DCB}:2\)

Xét ∆ vuông BDC có:

\(\widehat{BDC}+\widehat{DCB}=90^o=>\widehat{DCB}:2+\widehat{DCB}=90^o\)

\(\Rightarrow\widehat{DCB}=60^o\\ \Rightarrow\widehat{BDC}=60^o:2=30^O\)

Ta có: \(\widehat{BAD}=\widehat{ABC}\) (t/chất hthang)

\(\Rightarrow\widehat{BAD}=180^o-\widehat{BDC}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{BAD}=\widehat{ABC}=120^o\)

23 tháng 2 2023

a)SABCD=160 cm2

b)SAMCD=140 cm2

Giải thích các bước giải:

a) Diện tích hình thang ABCD là:

SABCD=(CD+AB)×AH2=(20+12)×102=160 (cm2)

b) Diện tích △ACD là:

SACD=CD×AH2=20×102=100 (cm2)

Diện tích △ABC là:

SABC=SABCD−SACD=160−100=60 (cm2)

Do BC=3BM nên SABC=3SABM

Diện tích △ABM là:

SABM=13SABC=13×60=20 (cm2)

Diện tích tứ giác AMCD là:

SAMCD=SABCD−SABM=160−20=140 (cm2)

Đáp số: a)SABCD=160 cm2