K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

=> Đường kính là BC, Tâm là trung điểm của BC

Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

=> Đường kính là BH và tâm là trung điểm của BH

a: góc AFH+góc AEH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc IBF=góc IEC

Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc I chung

=>ΔIBF đồng dạng với ΔIEC

=>IB/IE=IF/IC

=>IB*IC=IE*IF

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\)

nên BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{HDC}+\widehat{HEC}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc CDH+góc CEH=90+90=180 độ

=>CDHE nội tiếp

b: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có

góc BEF=góc DEH

góc BFE=góc DHE

=>ΔBFE đồng dạng với ΔDHE

5 tháng 6 2018

Mình làm câu cuối nhá bài này dễ ợt ý mà

Gọi góc BAC = ♪ ( cho sinh độg) =))

Thì góc BHC = 180 – ♪

Vì D là trung điểm MH => ∆ CMH cân

=> ∆ CMB = ∆ CHB (c.c.c)

=> Góc CMB bằng góc CHB = 180 – ♪

Mà A,H,D thẳng hàng và H Đối xứng với M qua trục BC

Đến đây đủ để kết luận là

Đường tròn ở sẽ đối xứng với đường tròn ngoại tiếp ∆ BHC

Nên (O) =(I)

= 2πR

Với I là tâm