Giải pt:\(x^3-2x^2-1=0\)
Cần gấp!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(4x^2+8x+3\right)-18=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\Rightarrow a\left(4a-1\right)-18=0\)
\(\Leftrightarrow4a^2-a-18=0\)
\(\Leftrightarrow\left(4a^2+8a\right)+\left(-9a-18\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(4a-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=\frac{9}{4}\end{cases}}\)
\(\Rightarrow x^2+2x+1=\frac{9}{4}\)
\(\Leftrightarrow4x^2+8x-5=0\)
\(\Leftrightarrow\left(4x^2-2x\right)+\left(10x-5\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)
`x^2-2x-sqrt3+1=0`
Vì `Delta=1+sqrt3-1>0`
`=>` pt có 2 nghiệm pb
ÁP dụng vi-ét:
`x_1+x_2=2,x_1.x_2=1-sqrt3`
`M=x_1^2x_2^2-2x_1.x_2-x_1-x_2`
`=(x_1.x_2)^2-2(x_1.x_2)-(x_1+x_2)`
`=(sqrt3-1)^2-2(1-sqrt3)-2`
`=4-2sqrt3-2+2sqrt3-2`
`=0`
a) 2x3+5x2-3x=0
<=> 2x3+6x2-x2-3x=0
<=> 2x2(x+3)-x(x+3)=0
<=> (x+3)(2x2-x)=0
<=> (x+3)x(2x-1)=0
\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\x=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
c) x3+1=x(x+1)
<=> (x+1)(x2+1-x)-x(x+1)=0
<=> (x+1)(x2-2x+1)=0
<=> (x+1)(x-1)2=0
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy ...
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-8\\x+2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3y=-8\left(1\right)\\2x+4y=-6\left(2\right)\end{matrix}\right.\)
Trừ vế với vế pt (2) cho pt (1) ta được
$2x+4y-(2x-3y)=2$
$⇔7y=2$
$⇔y=\dfrac{2}{7}⇒(1)x=-\dfrac{25}{7}$
Vậy hệ pt cho có tập nghiệm $S={-\dfrac{25}{7};\dfrac{2}{7}}$
Phương trình đã cho tương đương với:
\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\) \(x-4=0\) hoặc \(3x+2=0\)
\(\Leftrightarrow\) \(x=4\) hoặc \(x=-\frac{2}{3}\)
Vậy, \(S=\left\{-\frac{2}{3};4\right\}\)