K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

a.\(m=1\)

\(\Leftrightarrow x^2-2.1x+1^2-1-3=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )

b.\(\Delta=\left(-2m\right)^2-4\left(m^2-m-3\right)\)

      \(=4m^2-4m^2+4m+12\)

      \(=4m+12\)

Để pt có nghiệm kép thì \(\Delta=0\)

                                        \(\Leftrightarrow4m+12=0\) 

                                         \(\Leftrightarrow m=-3\)

3 tháng 3 2016

bài này sử dụng định lí vi-ét nha

5 tháng 8 2021

PT có 2 nghiệm `<=> \Delta' >=0`

`<=> 4(2m+3)^2 -4(4m^2-3) >=0`

`<=>16m^2+48m+36-16m^2+12>=0`

`<=>m >= -1`

Viet: `{(x_1+x_2=-2m-3),(x_1x_2=4m^2-3):}`

Theo đề: `x_1^2+x_2^2=1/2`

`<=>(x_1+x_2)^2-2x_1x_2=1/2`

`<=>(-2m-3)^2 -2(4m^2-3)=1/2`

`<=>-4m^2+12m+15=1/2`

`<=>` \(\left[{}\begin{matrix}m=\dfrac{6+\sqrt{94}}{4}\left(TM\right)\\m=\dfrac{6-\sqrt{94}}{4}\left(L\right)\end{matrix}\right.\)

Vậy....

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

30 tháng 5 2023

a) m = 1, phương trình tương đương:

x² + 4x = 0

⇔ x(x + 4) = 0

⇔ x = 0 hoặc x + 4 = 0

*) x + 4 = 0

⇔ x = -4

Vậy S = {-4; 0}

b) ∆' = [-(m - 3)]² - (m² - 1)

= m² - 6m + 9 - m² + 1

= -6m + 10

Phương trình có hai nghiệm phân biệt khi ∆' > 0

⇔ -6m + 10 > 0

⇔ -6m > -10

⇔ m < 5/3

Vậy m < 5/3 thì phương trình đã cho có hai nghiệm phân biệt

30 tháng 5 2023

bạn ơi sao tính ra đc x2+4x=0 vậy bạn 

 

6 tháng 5 2022

a) Thay m=3

\(x^2-2.3.m+3^2-3=0\)

\(x^2-6x+6=0\)

\(\text{∆}=6^2-4.6=12>0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)

b) \(\text{∆}=\left(-2m\right)^2-4.\left(m^2-3\right)\)

\(=4m^2-4m^2+12=12>0\)

⇒ pt có 2 nghiệm phân biệt với mọi m

6 tháng 5 2022

Câu a em tự giải nha.

b. \(\Delta'=\left(-m\right)^2-\left(m^2-3\right)\)

\(=m^2-m^2+3\)

\(=3>0\forall m\)

26 tháng 4 2023

loading...  

19 tháng 4 2021

a, Thay m = 0 vào phương trình trên ta được 

\(x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)

Vậy với m = 0 thì x = -1 ; x = 3