Cho PS A =\(\frac{6n-3}{4n-6}\)Tìm số tự nhiên n để A có giá trị nhỏ nhất . Tính giá trị đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{6n-3}{4n-6}=\frac{6n-9+6}{4n-6}=\frac{3\left(2n-3\right)}{2\left(2n-3\right)}+\frac{6}{4n-6}\)
\(M=\frac{3}{2}+\frac{6}{4n-6}\)
Để M lớn nhất , \(\frac{6}{4n-6}\)là số dương lớn nhất => 4n - 6 là số dương nhỏ nhất mà n là số tự nhiên
=> 4n - 6 = 2 => n = 2
Ta có: \(M=\frac{6n-3}{4n-6}=\frac{\frac{3}{2}.\left(4n-6\right)+6}{4n-6}=\frac{\frac{3}{2}.\left(4n-6\right)}{4n-6}+\frac{6}{4n-6}=\frac{3}{2}+\frac{6}{4n-6}\le\frac{3}{2}\)
Dấu "=" xảy ra khi: 6 chia hết cho 4n - 6
<=> \(4n-6\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
4n-6 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 7/4 | 5/4 | 2 | 1 | 9/4 | 3/4 | 3 | 0 |
Vì \(n\in N\) => n = {0;1;2;3}
Vậy Mmax = 3/2 <=> n = {0;1;2;3}
Để M lơn nhất thì 2M lớn nhât
=>12n-6/4n-6 lớn nhất
=>6n-3/2n-3 lớn nhất
=>3+6/2n-3 lớn nhất
=>2n-3 là số nguyên dương nhỏ nhất
=>2n-3=1
=>n=2
Khi n=2 thì \(M=\dfrac{6\cdot2-3}{4\cdot2-6}=\dfrac{12-3}{8-6}=\dfrac{9}{2}\)
\(M=\frac{6n-3}{4n-6}=\frac{6n-9+6}{4n-6}=\frac{3\left(2n-3\right)}{2\left(2n-3\right)}+\frac{6}{4n-6}=\frac{3}{2}+\frac{6}{4n-6}\)
Do đó, để M có giá trị lớn nhất thì 6/(4n-6) có giá trị lớn nhất
=>4n-6 có giá trị nhỏ nhất(nEN)
=>4n-6=2
4n=6+2
4n=8
n=8/4=2
Nếu n=2 thì M=\(\frac{3}{2}+\frac{6}{4\cdot2-6}=\frac{3}{2}+\frac{6}{8-6}=\frac{3}{2}+3=\frac{3}{2}+\frac{6}{2}=\frac{9}{2}=4,5\)
Vậy M đạt giá trị lớn nhất là 4,5 tại n=2
Lời giải:
$2M=\frac{12n-6}{4n-6}=\frac{3(4n-6)+12}{4n-6}=3+\frac{12}{4n-6}$
$=3+\frac{6}{2n-3}$
Để $M$ lớn nhất thì $\frac{6}{2n-3}$ lớn nhất.
Điều này xảy ra khi $2n-3$ là số nguyên dương nhỏ nhất
$\Rightarrow 2n-3=1$
$\Rightarrow n=2$.
Để \(n\in N\Leftrightarrow6n-3\) chia hết \(4n-6\)
\(\Leftrightarrow6n-3-\left(4n-3-3\right)\) chia hết cho \(4n-6\)