Cho tam giác ABC có AB AC. kẻ tia phân giác của gocA cắt BC tại H.Chứng minha tam giac AHC tam giacAHBb AH vuong goc voi BCc ve tia HD vuong goc voi AB d thuoc AB va tia HE vuong goc voi AC E thuoc AC .chung minh ED song song voi BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
\(\widehat{BAH}\) =\(\widehat{CAH}\) (gt)
AH là cạnh chung
=>\(\Delta AHB=\Delta AHC\)
b) Từ câu a) =>\(\widehat{AHB}\) =\(\widehat{AHC}\)(2 góc tương ứng) (*)
Ta có:\(\widehat{AHB}\) + \(\widehat{AHC}\) =180 độ (**)
Từ (*) và (**) =>\(\widehat{AHB}\) =\(\widehat{AHC}\) =\(\frac{180}{2}\)=90 độ
Vậy AH\(⊥\)BC
c) Từ câu a)=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:\(\widehat{DHB}\)=180 độ -\(\widehat{BDH}\) -\(\widehat{DBH}\)
\(\widehat{EHC}\)=180 độ -\(\widehat{HEC}\) -\(\widehat{ECH}\)
Mà \(\widehat{B}\)=\(\widehat{C}\) (cmt)
=>\(\widehat{DHB}\)=\(\widehat{EHC}\)
=>\(\Delta DHB=\Delta EHC\)(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét \(\Delta ADI\) và \(\Delta AEI\)
AD=AE (cmt)
\(\widehat{DAI}\)=\(\widehat{EAI}\)(gt)
AH là cạnh chung
=>\(\Delta ADI\)=\(\Delta AEI\)(c.g.c)
=>\(\widehat{AID}\)=\(\widehat{AIE}\)=\(\frac{180}{2}\)=90(tương tự câu b)
=>AH\(⊥\)DE
Vì DE\(⊥\) AH;BC\(⊥\)AH,Vậy DE song song BC
hình tự vẽ
a, Xét tam giác AHB và AHC
AB=AC(đề bài)
góc BAH=HAC(AH là tia phân giác góc BAC)
AH là cạnh chung
=> tam giác AHB=AHC(C.G.C)
b,Vì tam giác AHB=AHC(câu a)
=> góc BHA=góc AHC( 2 cạnh tương ứng)
Mà BHA+ AHC=180 độ(2 góc kề bù)
=> BHA=AHC=1/2*180 độ
= 90 độ
=> AH vuông góc với BC.
hình tự vẽ nha bn ^^
a) tam giác ABH và tam giác ÁCH có
AH=AH
Góc A1=góc A2 (pg góc A)
AB=AC (gt)
=> tam giác AHB=tam giác AHC (c-g-c)
b) ta có AB=AC=> tam giác ABC cân tại A
tam giác ABC cân tại A có AH là pg (gt)
=> AH là đường cao
=> AH vuông góc với BC
c) tam giác DBH vuông và tam giác ECH vuông có
HB=HC ( tam giác ABC cân tại A có AH là pg=> AH là trung tuyến)
góc ABC=góc ACB
=> tam giác DBH =tam giác ECH (ch-gn)
=> DB=EC
cộng đoạn thẳng => AD=AE=> tam giác ADE cân tại A
tam giác ADE cân tại A có AH là pg => AH là đường cao=> AH vuông góc DE (1)
mà AH vuông góc BC (cmt) (2)
từ (1),(2) => DE song song BC
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
Hình:
Giải:
Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:
\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)
=> Có 8 góc nhọn
Ta có:
\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)
Suy ra tứ giác AFHE là hình chữ nhật
Từ đó, suy ra:
\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)
* Xét trường hợp FH // AE ( FH // AC), có:
- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)
- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)
* Xét trường hợp HE // AF ( HE // AB), có:
- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)
- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)
Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau
Vậy ...
xét tam giác ABH VÀ TAM GIÁC ACH CÓ
AB=AC
AH CHUNG
GÓC AHB=GÓC AHC
=>TAM GIÁC AHC=TAM GIÁC ABH
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
ˆBAHBAH^ =ˆCAHCAH^ (gt)
AH là cạnh chung
=>ΔAHB=ΔAHCΔAHB=ΔAHC
b) Từ câu a) =>ˆAHBAHB^ =ˆAHCAHC^(2 góc tương ứng) (*)
Ta có:ˆAHBAHB^ + ˆAHCAHC^ =180 độ (**)
Từ (*) và (**) =>ˆAHBAHB^ =ˆAHCAHC^ =18021802=90 độ
Vậy AH⊥⊥BC
c) Từ câu a)=> ˆBB^=ˆCC^ (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:ˆDHBDHB^=180 độ -ˆBDHBDH^ -ˆDBHDBH^
ˆEHCEHC^=180 độ -ˆHECHEC^ -ˆECHECH^
Mà ˆBB^=ˆCC^ (cmt)
=>ˆDHBDHB^=ˆEHCEHC^
=>ΔDHB=ΔEHCΔDHB=ΔEHC(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét ΔADIΔADI và ΔAEIΔAEI
AD=AE (cmt)
ˆDAIDAI^=ˆEAIEAI^(gt)
AH là cạnh chung
=>ΔADIΔADI=ΔAEIΔAEI(c.g.c)
=>ˆAIDAID^=ˆAIEAIE^=18021802=90(tương tự câu b)
=>AH⊥⊥DE
Vì DE⊥⊥ AH;BC⊥⊥AH,Vậy DE song song BC
@FG★Ĵ❍ƙĔŔᵛᶰ chép mạng lỗi bài kìa,lần sau ghi nguồn vô nhá:)))