Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
\(\widehat{BAH}\) =\(\widehat{CAH}\) (gt)
AH là cạnh chung
=>\(\Delta AHB=\Delta AHC\)
b) Từ câu a) =>\(\widehat{AHB}\) =\(\widehat{AHC}\)(2 góc tương ứng) (*)
Ta có:\(\widehat{AHB}\) + \(\widehat{AHC}\) =180 độ (**)
Từ (*) và (**) =>\(\widehat{AHB}\) =\(\widehat{AHC}\) =\(\frac{180}{2}\)=90 độ
Vậy AH\(⊥\)BC
c) Từ câu a)=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:\(\widehat{DHB}\)=180 độ -\(\widehat{BDH}\) -\(\widehat{DBH}\)
\(\widehat{EHC}\)=180 độ -\(\widehat{HEC}\) -\(\widehat{ECH}\)
Mà \(\widehat{B}\)=\(\widehat{C}\) (cmt)
=>\(\widehat{DHB}\)=\(\widehat{EHC}\)
=>\(\Delta DHB=\Delta EHC\)(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét \(\Delta ADI\) và \(\Delta AEI\)
AD=AE (cmt)
\(\widehat{DAI}\)=\(\widehat{EAI}\)(gt)
AH là cạnh chung
=>\(\Delta ADI\)=\(\Delta AEI\)(c.g.c)
=>\(\widehat{AID}\)=\(\widehat{AIE}\)=\(\frac{180}{2}\)=90(tương tự câu b)
=>AH\(⊥\)DE
Vì DE\(⊥\) AH;BC\(⊥\)AH,Vậy DE song song BC
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
a)ta co: dh=dk(tc tia phan giac cua mot goc)
goc d1=d2(gt)
da: canh chung
=> hk=dk => da la duong trung truc cua hk.
=> dhk la tam giac deu.
b) loang ngoang kho hieu luc khac giai
a. Do D thuộc đường phân giác của góc BAC nên DH = DK, hay ta, giác DHK cân.
Cũng do AD là phân giác của góc BAC nên \(\widehat{KAD}=\widehat{DAH}=60^0\)
Lại có: \(\widehat{KAD} + \widehat{ADK}=90^0, \widehat{KAD}=60^0 \Rightarrow \widehat{ADK}=30^0.\)
Tương tự như vậy, \(\widehat{ADH}=30^0\). Từ đó ta dễ thấy rằng \(\widehat{HDK}=60^0\).
Tam giác cân DHK có một góc bằng \(60^0\) nên DHK là tam giác đều.
b. Ta thấy góc IAC kề bù với góc BAC nên \(\widehat{IAC}=180^0-120^0=60^0\)
Lại có do AD song song CI nên \(\widehat{ACI}=\widehat{DAC}=60^0\) (So le trong)
Tam giác ACI có 2 góc bằng \(60^0\) nên góc còn lại cũng bằng \(60^0\) và đó là tam giác đều.
PS: Chú ý đến các giải thiết liên quan tới đối tượng cần chứng minh để tìm cách giải em nhé, chúc em học tốt ^^
Bai 4:(tu ke hinh nha!)
*Truong hop BC la canh huyen;
tam giac ABC vuong tai A .Ap dung dinh ly pytago ta co:
BC2=AB2+AC2
102=62+AC2
100=36+AC2
AC2=100-36
AC2=64
AC=8
*Truong hop AC la canh huyen
AC2=AB2+BC2
AC2=62+102
AC2=36+100
AC2=136
AC=CAN CUA 136
Vay AC bang :can 136:8
Bài 1 ( Hình tự kẻ )
a) Xét tam giác ABD và tam giác HBD, ta có:
góc BAD = góc BHD = 90 độ
BD là cạnh chung
góc ABD = góc HBD ( BD là đường phân giác của góc ABH )
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
b) Xét tam giác ADE và tam giác HDC, ta có:
góc EAD = góc CHD = 90 độ
DA = DH ( vì tam giác ABD = tam giác HBD )
góc ADE = góc HDC ( đối đỉnh )
=> tam giác ADE = tam giác HDC ( cạnh góc vuông - góc nhọn )
=> góc AED = góc HCD ( 2 góc tương ứng )
** Mk chỉ có thể giúp dc đến đó thôi
hình tự vẽ nha bn ^^
a) tam giác ABH và tam giác ÁCH có
AH=AH
Góc A1=góc A2 (pg góc A)
AB=AC (gt)
=> tam giác AHB=tam giác AHC (c-g-c)
b) ta có AB=AC=> tam giác ABC cân tại A
tam giác ABC cân tại A có AH là pg (gt)
=> AH là đường cao
=> AH vuông góc với BC
c) tam giác DBH vuông và tam giác ECH vuông có
HB=HC ( tam giác ABC cân tại A có AH là pg=> AH là trung tuyến)
góc ABC=góc ACB
=> tam giác DBH =tam giác ECH (ch-gn)
=> DB=EC
cộng đoạn thẳng => AD=AE=> tam giác ADE cân tại A
tam giác ADE cân tại A có AH là pg => AH là đường cao=> AH vuông góc DE (1)
mà AH vuông góc BC (cmt) (2)
từ (1),(2) => DE song song BC