K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)

b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)

17 tháng 7 2021

a) \(M=\left(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\left(x>0\right)\)

\(=\left(\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2x+3\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}\)

b) Ta có: \(\sqrt{x}+4>\sqrt{x}+1\Rightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+1}>1\)

c) \(\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Ta có: \(\left\{{}\begin{matrix}3>0\\\sqrt{x}+1>0\end{matrix}\right.\Rightarrow1+\dfrac{3}{\sqrt{x}+1}>1\Rightarrow M>1\)

Lại có: \(\sqrt{x}+1>1\left(x>0\right)\Rightarrow\dfrac{3}{\sqrt{x}+1}< 3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}< 4\Rightarrow M< 4\)

\(\Rightarrow1< M< 4\Rightarrow M\in\left\{2;3\right\}\)

\(M=2\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=2\Rightarrow\dfrac{3}{\sqrt{x}+1}=1\Rightarrow\sqrt{x}+1=3\)

\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(M=3\Rightarrow1+\dfrac{3}{\sqrt{x}+1}=3\Rightarrow\dfrac{3}{\sqrt{x}+1}=2\Rightarrow2\sqrt{x}+2=3\)

\(\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

19 tháng 12 2021

a: \(P=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)

8 tháng 12 2021

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

28 tháng 11 2021

\(a,B=\dfrac{-\sqrt{x}-3+\sqrt{x}-3+x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\left(x\ge0;x\ne9\right)\\ B=\dfrac{x-2}{x-9}=\dfrac{x-9+7}{x-9}=1+\dfrac{7}{x-9}\in Z\\ \Leftrightarrow x-9\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{2;8;11;16\right\}\)

Vậy giá trị x thỏa đề là \(x=2\)

27 tháng 11 2021

bạn ktra lại đề ở chỗ 2/3/-x 

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)