K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

nghiệm thuộc giá trị 0 

tìm m bằng cách tách biến 

\(m=-x^2+4+3\sqrt{x\left(4-x\right)}\)

nghiệm thuộc giá trị 4 

vẫn tách biến :

\(m=22,97366596\)

18 tháng 1 2022

này là câu trl vs đề có x thuộc nghiệm 0 và 4 , tại mình nghĩ bn ghi đề chưa đủ

14 tháng 12 2021

PT\(\Leftrightarrow\left(x^2-4x+5\right)+3\sqrt{x^2-4x+5}-2m-2=0\)

Đặt: \(a=x^2-4x+5\left(a\ge1\right)\)

Pt trở thành: \(a^2+3a-2m-2=0\)

Pt trên có nghiệm khi:
\(\Delta\ge0\Leftrightarrow9+4\left(2m+2\right)\ge0\Leftrightarrow m\ge-\dfrac{17}{8}\)

17 tháng 12 2021

\(x^4+2x^3+5x^2+4x-1-m=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)

\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)

\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)

\(f\left(t\right)=t^2+4t-1=m\)

\(f\left(-\dfrac{b}{2a}\right)=-5\)

\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\) 

\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)

\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)

\(f\left(-1\right)=2;f\left(1\right)=4\)

\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)

\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)

có nghiệm trên \(\left[-1;1\right]\)

\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)

\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có  nghiệm thuộc \(\left[-1;1\right]\)

 

 

NV
2 tháng 5 2021

Bạn kiểm tra lại đề, sao có 2 dầu = trong pt thế kia nhỉ?

2 tháng 5 2021

Đề nó viết thế

9 tháng 8 2021

Đặt \(\sqrt{x^2-4x+5}=t\left(t\ge1\right)\)

\(\sqrt{x^2-4x+5}=m+4x-x^2\)

\(\Leftrightarrow m=x^2-4x+5+\sqrt{x^2-4x+5}-5\)

\(\Leftrightarrow m=f\left(t\right)=t^2+t-5\)

Phương trình có nghiệm khi \(m\ge minf\left(t\right)=-3\)

3 tháng 11 2018

1)Dat t=\(\sqrt{4x-x^2}\)\(\Rightarrow Pt\Leftrightarrow t^2+2t+1=m+1\ge0\Rightarrow m\ge-1\)

Theo dinh li Viet thi \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\Rightarrow-m\le0\Leftrightarrow m\ge0}\)

3 tháng 11 2018

Dat \(t=\sqrt{x^2+4x+5}\left(t\ge1\right)\)\(\Rightarrow Pt\Leftrightarrow t^2+t+m-2=0\)

DK:\(\Delta=1-4\left(m-2\right)=9-4m\ge0\Leftrightarrow m\le\dfrac{9}{4}\)

Pt co nghiem la \(t=\dfrac{-1-\sqrt{\Delta}}{2}\left(loai\right),t=\dfrac{-1+\sqrt{\Delta}}{2}\)

Vi \(t\ge1\)\(\Rightarrow\sqrt{\Delta}\ge3\Leftrightarrow9-4m\ge9\Leftrightarrow m\le0\)

\(5\ge\left|x\right|=\left|\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\right|=\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\Leftrightarrow\sqrt{9-4m}\le51\Leftrightarrow m\ge-648\)Vay \(-648\le m\le0\)

NV
23 tháng 2 2021

\(x^4+4x^3+4x^2-4mx^2-8mx+3m+1=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-4m\left(x^2+2x\right)+3m+1=0\)

Đặt \(x^2+2x=t\ge-1\)

\(\Rightarrow f\left(t\right)=t^2-4m.t+3m+1=0\) (1)

\(\Delta'=4m^2-3m-1\ge0\Rightarrow\)\(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)

Khi đó (1) có 2 nghiệm thỏa mãn \(t_1\le t_2< -1\) khi

 \(\left\{{}\begin{matrix}f\left(-1\right)>0\\\dfrac{t_1+t_2}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+2>0\\2m< -1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

\(\Rightarrow\) (1) luôn có ít nhất 1 nghiệm không nhỏ hơn -1

\(\Rightarrow\) Pt đã cho có nghiệm khi \(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)

24 tháng 2 2021

Chỗ này em chưa hiểu ạ, theo yêu cầu bài toán thì phải là \(t_1\ge t_2\ge-1\) chứ ạ.

19 tháng 1 2024

loading...

NV
15 tháng 12 2020

\(VT=\sqrt{\left(x+2\right)^2+4}+\sqrt{\left(3-x\right)^2+1}\)

\(VT\ge\sqrt{\left(x+2+3-x\right)^2+\left(2+1\right)^2}=\sqrt{34}\)

Pt có nghiệm khi và chỉ khi \(m\ge\sqrt{34}\)