K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

PT\(\Leftrightarrow\left(x^2-4x+5\right)+3\sqrt{x^2-4x+5}-2m-2=0\)

Đặt: \(a=x^2-4x+5\left(a\ge1\right)\)

Pt trở thành: \(a^2+3a-2m-2=0\)

Pt trên có nghiệm khi:
\(\Delta\ge0\Leftrightarrow9+4\left(2m+2\right)\ge0\Leftrightarrow m\ge-\dfrac{17}{8}\)

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

25 tháng 10 2020

1.

\(y=m-1=\left|-x^2+4x+5\right|\)

Phương trình đã cho có 4 nghiệm phân biệt khi đương thẳng \(y=m-1\) cắt đồ thị hàm số tại 4 điểm phân biệt

\(\Rightarrow0< m-1< 9\Rightarrow m\in\left(1;10\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2018

Lời giải:

Để cho gọn, đặt \(x^2=t(t\geq 0)\)

PT trở thành:

\((m-2)t^2-2(m+1)t+(2m-1)=0(*)\)

a) Để PT đã cho vô nghiệm thì thì \(\Delta'\) âm hoặc \((*)\) có nghiệm âm.

----------------------------

\(\Delta'=(m+1)^2-(m-2)(2m-1)<0\)

\(\Leftrightarrow -m^2+7m-1<0\)

\(\Leftrightarrow m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)

PT \((*)\) có nghiệm âm khi mà:

\(\left\{\begin{matrix} \Delta'=-m^2+7m-1\geq 0\\ t_1+t_2=\frac{2(m+1)}{m-2}<0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow \frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\)

Vậy để PT vô nghiệm thì \(\frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\) , \(m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)

b) Để PT đã cho có nghiệm duy nhất thì (*) có nghiệm duy nhất. Với nghiệm \((*)\) thu được duy nhất là \(t=k\geq 0\), nếu \(k\neq 0\Rightarrow \) PT đã cho có 2 nghiệm \(\pm \sqrt{k}\) (không thỏa mãn).

Do đó nếu PT đã cho có nghiệm duy nhất thì nghiệm đó phải là 0

\(\Rightarrow (m-2).0^4-2(m+1).0^2+2m-1=0\Leftrightarrow m=\frac{1}{2}\)

Thay vào thử lại thấy thỏa mãn.

Vậy \(m=\frac{1}{2}\)

c) Để PT đã cho có hai nghiệm thì \((*)\) có duy nhất một nghiệm dương, nghiệm còn lại âm. Khi đó:

\(\Delta'=-m^2+7m-1>0\) (1)

Và: \(t_1t_2<0\Leftrightarrow \frac{2m-1}{m-2}<0\Leftrightarrow \frac{1}{2}< m< 2\) (2)

Kết hợp (1); (2) suy ra \(\frac{1}{2}< m< 2\)

d)

PT ban đầu có ba nghiệm khi mà $(*)$ có một nghiệm bằng 0 và một nghiệm còn lại là dương.

\((*)\) có nghiệm 0 thì PT ban đầu cũng có nghiệm 0. Theo phần b ta suy ra \(m=\frac{1}{2}\). Thử lại ta thấy với \(m=\frac{1}{2}\) thì PT ban đầu có nghiệm 0 duy nhất. Do đó không tồn tại $m$ để PT có ba nghiệm.

e)

Để PT ban đầu có 4 nghiệm thì $(*)$ có hai nghiệm dương phân biệt. Điều này xảy ra khi mà:

\(\Delta'=-m^2+7m-1>0\) (1)và: \(\left\{\begin{matrix} t_1+t_2=\frac{2(m+1)}{m-2}>0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow m>2\) (2)

Từ (1); (2) suy ra \(2< m< \frac{7+3\sqrt{5}}{2}\)