Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
Với mọi n thuộc N thì 60n +45 chia hết cho 15 nhưng không chia hết cho 30
ta có: 60 chia hết cho 15 nên 60n chia hết cho 15
45 chia hết cho 15
=>60n+45 chia hết cho 15
ta lại có: 60 chia hết cho 30 nên 60n chia hết cho 30
mà 45 ko chia hết cho 30
=>với mọi n thuộc N thì 60n+45 chia hết cho 15 nhưng ko chia hết cho 30(đpcm)
60n+45=15(4n+3) chia hết cho 15 với mọi n thuộc N
60n+45=60n+30+15=30(2n+1)+15
Vì 30(2n+1) chia hết cho 30 và 15 không chia hết cho 30
=>60n+45 không chia hết cho 30 với mọi n thuộc N
ta có: 60 chia hết cho 15 nên 60n chia hết cho 15
45 chia hết cho 15
=>60n+45 chia hết cho 15
ta lại có: 60 chia hết cho 30 nên 60n chia hết cho 30
mà 45 ko chia hết cho 30
=>với mọi n thuộc N thì 60n+45 chia hết cho 15 nhưng ko chia hết cho 30(đpcm)
60n+45=15(4n+3) chia hết cho 15 với mọi n thuộc N
60n+45=60n+30+15=30(2n+1)+15
Vì 30(2n+1) chia hết cho 30 và 15 không chia hết cho 30
=>60n+45 không chia hết cho 30 với mọi n thuộc N