Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho BM = 2/3MA, lấy điểm N trên cạnh AC sao cho AN = 2NC. Tính diện tích tam giác ABC, biết diện tích tam giác AMN là 9cm2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{S_{AMN}}{S_{ABN}}=\frac{AM}{AB}=\frac{1}{2}\) (do $M$ là trung điểm $AB$)
\(\frac{S_{ABN}}{S_{ABC}}=\frac{AN}{AC}=\frac{AN}{AN+NC}=\frac{2NC}{2C+NC}=\frac{2NC}{3NC}=\frac{2}{3}\)
Suy ra:
\(\frac{S_{AMN}}{S_{ABN}}\times \frac{S_{ABN}}{S_{ABC}}=\frac{1}{2}\times \frac{2}{3}\)
\(\frac{S_{AMN}}{S_{ABC}}=\frac{1}{3}\)
\(S_{AMN}=\frac{1}{3}\times S_{ABC}=\frac{1}{3}\times 90=30\) (cm2)
AB=BM
=>B là trung điểm của AM
=>AB=1/2AM
=>\(S_{AMC}=2\cdot S_{ABC}=2\cdot24=48\left(cm^2\right)\)
\(AN=3\cdot NC\)
=>\(NC=\dfrac{1}{3}\cdot AN\)
Ta có: AN+NC=AC
=>\(AC=\dfrac{1}{3}AN+AN=\dfrac{4}{3}AN\)
=>\(AN=\dfrac{3}{4}AC\)
=>\(S_{AMN}=\dfrac{3}{4}\cdot S_{AMC}=\dfrac{3}{4}\cdot48=36\left(cm^2\right)\)
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
tích nha các bạn mik hứa sẽ tích lại thề luôn
Đào Ngọc Minh Thư
Diện tích tam giác MNB là:
36:3x2=24(cm2)
Diện tích tam giác ABN hay diện tích tam giác BNC là:
36+24=60(cm2)
Diện tích tứ giác BMNC là:
24+60=84(cm2)
Đáp số: 84 cm2