K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2022

B, chắc chắn 1 trong 2 thẻ rút được là 0 hoặc 5 vì chia hết cho 5

Mà ta tính được 20 số chia hết cho 5

Ta tính được xắc xuất ra mỗi thẻ là 100÷20=5%

Iem mới lớp 6 sai mong anh TC

12 tháng 1 2022

a)

A : "Hai thẻ rút được lập nên một số có hai chữ số"

P(A) = \(\frac{A_9^2}{A_{100}^2}\)\(\frac{9.8}{100.99}\)  ~  0,0073

b/ B : "Hai thẻ rút được lập nên một số chia hết cho 5"

Số chia hết cho 5 tân cùng phải là 0 hoặc 5. Để có biến cố B thichs hợp với ta rút thẻ thứ hai một cách tùy ý trong 20 thẻ mang 5;10;15;20;...;95;100, và rút 1  trong 99 thẻ còn lại đặt vào vị trí đầu, Do số trường hợp thuận lợi cho 99,20

P(B) = \(\frac{99.20}{A^2_{100}}\)= 0,20

@minhnguvn

Một hộp có 100 tấm thẻ như nhau ñược ghi các số từ 1 ñến 100, Rút ngẫu nhiên hai thẻ rồi ñặt theo thứ tự từ trái qua phải. Tính xác suất ñển a/ Rút ñược hai thẻ lập nên một số có hai chữ số. b/ Rút ñược hai thẻ lập nên một số chia hết cho 5. Một hộp có chứa 7 quả cầu trắng và 3 quả cầu ñen cùng kích thước. Rút ngẫu nhiên cùng một lúc 4 quả cầu. Tính xác suất ñể trong 4 quả cầu rút ñược có a/...
Đọc tiếp

Một hộp có 100 tấm thẻ như nhau ñược ghi các số từ 1 ñến 100, Rút ngẫu nhiên hai thẻ rồi ñặt theo thứ tự từ trái qua phải. Tính xác suất ñển a/ Rút ñược hai thẻ lập nên một số có hai chữ số. b/ Rút ñược hai thẻ lập nên một số chia hết cho 5. 

Một hộp có chứa 7 quả cầu trắng và 3 quả cầu ñen cùng kích thước. Rút ngẫu nhiên cùng một lúc 4 quả cầu. Tính xác suất ñể trong 4 quả cầu rút ñược có a/ Hai quả cầu ñen. b/ Ít nhất 2 cầu ñen c/ Toàn cầu trắng

Một hộp thuốc có 5 ống thuốc tốt và 3 ống kém chất lượng. Chọn ngẫu nhiên lần lượt không trả lại 2 ống. Tính xác suất ñể: a/ Cả hai ống ñược chọn ñều tốt. b/ Chỉ ống ñược chọn ra ñầu tiên là tốt. c/ trong hai ống có ít nhất một ống thuốc tốt. 

0
25 tháng 10 2018

30 tháng 6 2018

Đáp án D

Có 2 trường hợp sau:

+) 1 thẻ ghi số chẵn, 1 thẻ ghi số lẻ, suy ra có  C 4 1 . C 5 1 = 20 cách rút.

+) 2 thẻ ghi số chẵn, suy ra có C 4 2 = 6 cách rút.

Suy ra xác suất bằng  20 + 6 C 9 2 = 13 18 .

12 tháng 3 2017

5 tháng 5 2023

 Số phần tử của không gian mẫu \(\left|\Omega\right|=C^2_{20}\)

 Gọi A là biến cố: "Tổng hai số trên hai tấm thẻ được rút ra bằng 10."

 Gọi \(\left(m,n\right)\) là nghiệm của \(m+n=10\). Phương trình này có tất cả \(C^{2-1}_{10-1}-1=8\) (\(-1\) ở đây là bỏ đi nghiệm \(\left(m;n\right)=\left(5;5\right)\)). Do đó \(\left|A\right|=8\) \(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{8}{C^2_{20}}=\dfrac{4}{95}\)

1 tháng 1 2020

Đáp án là A

27 tháng 3 2017

5 tháng 3 2018

Đáp án A

Rút ngẫu nhiên 2 thẻ trong 9 thẻ có  C 9 2 cách  ⇒ n ( Ω ) = C 9 2

Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”

Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ => có  C 5 2 cách =>  n ( X ) = C 5 2 .

Vậy xác suất cần tính là  P = n ( X ) n ( Ω ) = C 5 2 C 9 2 = 5 18 .

6 tháng 5 2019

Đáp án A

Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2  cách ⇒ n Ω = C 9 2  

Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”

Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ ⇒ có C 5 2  cách ⇒ n X = C 5 2  

Vậy xác suất cần tính là P = n X n Ω = C 5 2 C 9 2 = 5 18