1. tính tổng bằng phương pháp hợp lý nhất:
C=\(\frac{1}{1X2}+\frac{1}{1X3}+......+\frac{1}{49X50}\)
D=\(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{37.39}\)
GIÚP MÌNH NHA ! X là nhân đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{37}-\frac{2}{39}\)
\(=\frac{2}{3}-\frac{2}{39}\)
\(=\frac{8}{13}\)
Ta có:
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
\(\frac{2}{5.7}=\frac{1}{5}-\frac{1}{7}\)
\(\frac{2}{7.9}=\frac{1}{7}-\frac{1}{9}\)
\(......................................\)
\(\frac{2}{37.39}=\frac{1}{37}-\frac{1}{39}\)
nên \(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(C=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{37.39}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{37}-\frac{1}{39}\)
\(=\frac{1}{3}-\frac{1}{39}\)
\(=\frac{13}{39}-\frac{1}{39}\)
\(=\frac{12}{39}=\frac{4}{13}\)
ta có A=1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39
=1/3-1/39
=12/39
\(2A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right).2\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(2A=1-\frac{1}{99}\)
\(2A=\frac{98}{99}\)
\(A=\frac{98}{99}:2\)
\(A=\frac{49}{99}\)
a) \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{24\cdot25}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{25}\)
\(\Leftrightarrow\frac{4}{25}\)
a/ =1/5-1/6+1/6-1/7+1/7-1/8+...+1/24-1/25=1/5-1/25=4/25
Mấy câu còn lại thì từ từ!
a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
Gọi biểu thức trên là A
\(C=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{37\cdot39}\)
\(2C=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{37\cdot39}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{39}\)
\(2C=\dfrac{4}{13}\)
\(C=\dfrac{2}{13}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\)
\(C=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{39}\right)\)
\(C=\frac{1}{2}.\frac{12}{39}\)
\(C=\frac{4}{26}=\frac{2}{13}\)
\(A=\frac{1}{2}.\left(\frac{1}{3.5}+\frac{1}{5.7}+...\frac{1}{37.39}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{39}\right)=\frac{1}{2}.\frac{12}{39}=\frac{6}{39}\)
Ta đặt nhân tử chung nha :
\(A=\frac{1}{2}\left(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{37.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)
\(=\frac{1}{2}.\frac{12}{39}\)
\(=\frac{6}{39}\)
a, Ta có:
\(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{0,6-\frac{3}{9}+\frac{3}{11}}+\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{2\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}{3\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}+\frac{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}{-3\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}=\frac{2}{3}+\frac{-2}{3}=0\)
k đúng cho mình nha. Thanks!!!
a, bày cho mình cách viết bằng phân số đi , mình trình bày cách làm cho. k đúng cho mình nha.
Câu C sai đề rùi!
Đề đúng : C =1/1.2 + 1/2.3 +......+ 1/49.50
C = 1 - 1/2 + 1/2 - 1/3 +......+1/49 - 1/50
C = 1 - 1/50
C = 49/50
D = 2/3.5 + 2/5.7 +.......+ 2/37.39
D = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/37 - 1/39
D = 1/3 - 1/39
D = 12/39