\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

\(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{37.39}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{37}-\frac{1}{39}\)

\(=\frac{1}{3}-\frac{1}{39}\)

\(=\frac{13}{39}-\frac{1}{39}\)

\(=\frac{12}{39}=\frac{4}{13}\)

16 tháng 7 2016

ta có A=1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39

          =1/3-1/39

          =12/39

19 tháng 7 2017

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{15.17}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{17}\)

\(A=1-\frac{1}{17}\)

\(A=\frac{16}{17}\)

\(B=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{9.11}+\frac{4}{11.13}\)

\(B=\frac{4}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(B=\frac{4}{2}\left(1-\frac{1}{13}\right)\)

\(B=\frac{4}{2}\cdot\frac{12}{13}\)

\(B=\frac{24}{13}\)

19 tháng 7 2017

=> A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}\)

=> A= \(\frac{1}{1}-\frac{1}{17}\)

=> A= \(\frac{16}{17}\)

\(\Rightarrow B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(\Rightarrow B=2.\left(\frac{1}{1}-\frac{1}{13}\right)\)

\(\Rightarrow B=2.\frac{12}{13}\)

\(\Rightarrow B=\frac{24}{13}\)

14 tháng 4 2017

\(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n-1}\)

Áp dụng ta có:

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Tính C tương tự, áp dụng:

\(\frac{2}{n\left(n+2\right)}=\frac{n+2-n}{n\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)

B = 9899/9900

C=I don't know !! 

Ủng hộ nhé !

16 tháng 7 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\frac{8}{9}\)

\(=\frac{4}{9}\)

16 tháng 7 2016

Đặt: A=1/1.3+1/3.5+1/5.7+1/7.9

2A=2/1.3+2/3.5+2/5.7+2/7.9

2A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9

2A=1-1/9

2A=8/9

A=4/9

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43

= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43

= 1/3 - 1/43

= 40/129

ỦNG HỘ NHA

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 +......+ 2/41.43

= 1/3-1/5 + 1/5-1/7 + 1/7-1/9 +.....+ 1/41-1/43

= 1/3-1/43

= 40/129.

13 tháng 2 2016

b) 2/3.5+2/5/7+2/7.9+2/9.11+...+2/13.15

=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+..+1/13-1/15

=1/3-1/15

=4/15

c) 2/1.2+2/2.3+2/3.4+..+2/8.9+2/9.10

=2(1/1.2+1/2.3+1/3.4+..+1/8.9+1/9.10)

=2(1-1/2+1/2-1/3+1/3-1/4+..+1/8-1/9+1/9-1/10)

=2(1-1/10)

=2.9/10=9/5

d) 1/3+1/9+1/27+...+1/729

đặt A=1/3^1+1/3^2+1/3^3+..+1/3^6

3A=1+1/3+1/3^2+...+1/3^5

3A-A=1+1/3+1/3^2+...+1/3^5-1/3-1/3^2-1/3^3-...-1/3^6

2A=1-1/3^6

2A=728/729

A=728/729:2

A=364/729

30 tháng 5 2016

x=9/2

nha bạn

1 tháng 6 2016

x = 9/2

1 tháng 7 2017

BAN CO CHEP SAI DE KO VAY

1 tháng 7 2017

câu của tôi mắc gì tôi phải sao chép

29 tháng 6 2017

a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)

\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)

1 tháng 7 2017

Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)

\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)

\(2A=\frac{12}{3}-\frac{12}{99}\)

\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)

19 tháng 3 2018

Ta có : 

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Vậy \(A=\frac{33}{50}\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)