Bài 2: Cho tam giác cân ABC (AB = AC) . Trên đường thẳng đi qua đỉnh A và song song với BC lấy hai điểm M và N sao cho A là trung điểm của MN ( M, B cùng thuộc nửa mặt phẳng bờ AC). Gọi H, I, K lần lượt là trung điểm của các cạnh MB, BC, CN.
a/ Tứ giác MNCB là hình gì? Vì sao?
b/ Chứng minh tứ giác AHIK là hình thoi.
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.