K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2022

A = x3 + y3 + 3x2.y2

= (x + y)3 - 3xy(x + y) + 3x2.y2

= 8 - 6xy + 3x2.y2

= 3(x2y2 - 2xy + 1) + 5

= 3(xy - 1)2 + 5

Do (xy - 1)>= 0 với mọi x, y nên 3(xy - 1)2 + 5 >= 5 với mọi x, y

--> A >= 5

Đẳng thức xảy ra khi x = y = 1.

Vậy GTNN của A là 5 (khi x = y = 1)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

NV
11 tháng 4 2021

\(Q=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy\)

\(Q=8-6xy+4-2xy=12-8xy\)

\(Q=12-8x\left(2-x\right)=12-16x+8x^2=8\left(x-1\right)^2+4\ge4\)

\(Q_{min}=4\) khi \(x=y=1\)

11 tháng 4 2021

Đang 8xy thành 8x² vậy thầy ;;-;;

NV
25 tháng 12 2020

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

4 tháng 1 2021

đúng mà

10 tháng 7 2017

\(2x+3y=1\Rightarrow x=\frac{1-3y}{2}\)

Ta có \(S=3x^2+2y^2=3.\left(\frac{1-3y}{2}\right)^2+2y^2=\frac{35y^2-18y+3}{4}\)

\(=\frac{35\left(y^2-2.y.\frac{9}{35}+\frac{81}{1225}\right)+\frac{24}{35}}{4}=\frac{35}{4}\left(y-\frac{9}{35}\right)^2+\frac{6}{35}\)

Ta có \(35\left(y-\frac{9}{35}\right)^2\ge0\forall x\Rightarrow35\left(y-\frac{9}{35}\right)^2+\frac{6}{35}\ge\frac{6}{35}\forall x\Rightarrow S\ge\frac{6}{35}\)

Vậy \(MinS=\frac{6}{35}\)khi \(y=\frac{9}{35}\)

2 tháng 5 2023

Ta có:

x^3 + y^3 + x^2 + y^2 = 2xy(x+y)

Đặt S = x + y, P = xy, ta có:

x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS

Vậy ta có:

S^3 - 3PS + S^2 - 2P = 0

S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0

Do đó, ta có:

S^2 + S - 3P = 0

Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:

S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2

Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:

S = (-1 + sqrt(1 + 12P))/2

Tiếp theo, ta có:

K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)

= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))

= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)

= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)

= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +

30 tháng 4 2020

Ta có :

\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)

không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)

Khi đó : A = x - y + y - z + x - z = 2x - 2z

vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)

\(\Rightarrow A\le6\)

Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các  hoán vị

14 tháng 1 2021

Do x,y∈Z và 3x+2y=1 ⇒xy<0

3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)

Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)

⇒x = 1 - 2t ; y = 3t - 1

khi đó : H = t\(^2\) -3t + |t| -1

nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2

Dấu "=" xảy ra ⇔t=1

nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2

vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)