A= 1- 4x2/ 2+ 4x: 2- 4x/ 3
Giúp mik với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x+5=2\sqrt{2x+3}\)
\(ĐK:x\ge-\dfrac{3}{2}\)
\(pt\Leftrightarrow(2x+3-2\sqrt{2x+3}+1)+x^2+2x+1=0\)
\(\Leftrightarrow\left(\sqrt{2x+3}-1\right)^2=-\left(x+1\right)^2\)
Vì \(\left(\sqrt{2x+3}-1\right)^2\ge0;-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}(\sqrt{2x+3}-1)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)}\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy, pt có nghiệm duy nhất là x=-1
\(4A-3x^2+7-6x=x^2+3A-4x-3\)
\(\Rightarrow4A-3A=\left(x^2+3x^2\right)-\left(4x-6x\right)-\left(3+7\right)\)
\(\Rightarrow A=4x^2-\left(-2x\right)-10\)
\(\Rightarrow A=4x^2+2x-10\)
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)
Bài 1:
a: \(49-4x^2=\left(7-2x\right)\left(7+2x\right)\)
b: \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
c: \(x^2+18xy+81y^2=\left(x+9y\right)^2\)
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
b: \(B=\left(x+2\right)^2-\left(2x-1\right)^2\)
\(=x^2+4x+4-4x^2+4x-1\)
\(=-3x^2+8x+3\)
\(\dfrac{x+2}{x-3}+\dfrac{x-2}{x}=\dfrac{x^2+2x+6}{x\left(x-3\right)}\) đkxđ: x khác 3 , x khác 0
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-3\right)}+\dfrac{\left(x-2\right)\left(x-3\right)}{x\left(x-3\right)}-\dfrac{x^2+2x+6}{x\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+2x}{....}+\dfrac{x^2-3x-2x+6}{.....}-\dfrac{x^2+2x+6}{...}=0\)
\(\Leftrightarrow x^2+2x+x^2-3x-2x+6-x^2-2x-6=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
\(A=\dfrac{\left(1-2x\right)\left(1+2x\right)}{2\left(1+2x\right)}:\dfrac{2\left(1-2x\right)}{3}\)
\(=\dfrac{1-2x}{2}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3}{4}\)