K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

A C B H D M O K

a/ Ta có

\(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow CK\perp AC\) 

\(BH\perp AC\) (BH là đường cao) 

=> BH//CK (vì cùng vuông góc với AC) (1)

Ta có

\(\widehat{ABK}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow BK\perp AB\)

\(CH\perp AB\) (CH là đường cao)

=> CH//BK (cùng vuông góc với AB (2)

Từ (1) và (2) => BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)

b/ Nối BO cắt đường tròn tại D ta có

\(\widehat{BCD}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow CD\perp BC\)

\(AH\perp BC\) (AH là đường cao)

=> AH//CD (cùng vuông góc với BC) (3)

Ta có

\(\widehat{BAD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp AB\)

\(CH\perp AB\) (CH là đường cao)

=> AD//CH (cùng vuông góc với AB) (4)

Từ (3) và (4) => AHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)

=> AH=CD (trong hbh các cặp cạnh đối bằng nhau từng đôi một)

Xét \(\Delta BCD\) có

\(BM=CM;BO=DO\) => OM là đường trung bình của \(\Delta BCD\Rightarrow OM=\frac{1}{2}CD\)

Mà \(CD=AH\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)

7 tháng 10 2021

\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C

\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh

\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)

Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC

\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK

\(\Rightarrow OM=\dfrac{1}{2}AH\)

a: Xét tứ giác BHCK có

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo HK

Do đó: BHCK là hình bình hành

b: Ta có: BHCK là hình bình hành

nên BH//CK

mà BH\(\perp\)AC

nên CK\(\perp\)AC
hay ΔCAK vuông tại C

10 tháng 12 2021

a: Xét tứ giác BHCD có 

M là trung điểm của BC

M là trung điểm của HD

Do đó: BHCD là hình bình hành

10 tháng 12 2021

Bạn cho mình cái hình tham khảo được k ạ

18 tháng 9 2018

\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)

C/m tương tự cũng có \(CK//BH\)

=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Câu 2:

Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)

Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)

=> \(M\equiv M'\) => H; M;K thẳng hàng