K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB

26 tháng 12 2021

thx bạn

 

1 tháng 11 2017

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AC = CM, BD = DM nên AC.BD = CM.MD

ΔCOD vuông tại O, ta có:

CM.MD = OM2 = R2 (R là bán kính đường tròn O).

Vậy AC.BD = R2 (không đổi).

27 tháng 5 2021

TK:

a.

xét tứ giác BDMI ta có : IMD = 90 (CD  MI)

IBD = 90 (BD là tiếp tuyến)

mà 2 góc này ở vị trí đối nhau tứ giác BDMI là tứ giác nội tiếp

 DMB = DIB (2 góc nội tiếp cùng chắng cung DB của tứ giác BDMI) (1)

xét tứ giác ACMI ta có : IAC = 90 (AC là tiếp tuyến)

IMC = 90 (CD  MI)

mà 2 góc này ở vị trí đối nhau ⇒⇒ tứ giác ACMI là tứ giác nội tiếp

 CMA = CIA (2 góc nội tiếp cung chắng cung AC của tứ giác ACMI) (2)

mà CMA + DMB = 90 (góc AMB là góc nội tiếp chắng nửa (o)) (3)

tứ (1) ; (2) và (3) ta có : CIA + DIB = 90

 CID = 180 - 90 = 90

xét tứ giác MIEF ta có : AMB = 90 (góc nội tiếp chắng nửa (o))

CID = 90 (chứng minh trên)

mà 2 góc này ở vị trí đối nhau  tứ giác MIEF là tứ giác nội tiếp (đpcm)

27 tháng 5 2021

TK:b) ta có

\(\widehat{MEF}\)=\(\widehat{MIE}\)=\(\widehat{MIC}\)=\(\widehat{MAC}\)=\(\widehat{MBA}\)

 EF // AB (đpcm)

c.

Ta có \(\widehat{AMO}\)=\(\widehat{OAM}\)=\(\widehat{IAM}\)=\(\widehat{ICM}\)=\(\widehat{MCE}\)

→OM là tiếp tuyến của (CME và DFM)

25 tháng 11 2023

a: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc AOM

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc BOM

=>\(\widehat{BOM}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

=>OC\(\perp\)OD

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

\(\dfrac{AC^2+BD^2}{CD^2}\)

\(=\dfrac{AC^2+\left(3AC\right)^2}{\left(CM+MD\right)^2}\)

\(=\dfrac{10AC^2}{\left(CA+BD\right)^2}\)

\(=\dfrac{10AC^2}{\left(AC+3AC\right)^2}=\dfrac{10}{4^2}=\dfrac{10}{16}=\dfrac{5}{8}\)

 

25 tháng 11 2023

từ MC.MD= OM^2 sao có đc AC^2 + BD^2 / CD^2 vậy bạn