Cho: A= 1/2 + 1/3 + 1/4+ ... +1/2008
B= 2007/1 + 2006/2 + 2005/3 +... +2/2006 + 1/2007
Tính B/A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot......\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot......\cdot\frac{19}{20}\)
\(A=\frac{1.2.3.....19}{2.3........20}\)
\(A=\frac{1}{20}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+\frac{2}{2006}+......+\frac{2006}{2}+\frac{2007}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2006}+\frac{1}{2007}}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+1+\frac{2}{2006}+1+.......+\frac{2007}{1}+1+\frac{2008}{2008}-2008}{\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+.....+\frac{1}{2}}\)
\(\frac{M}{N}=\frac{\frac{2008}{2007}+\frac{2008}{2006}+....+\frac{2008}{1}+\frac{2008}{2008}-2008}{\frac{1}{2008}+........+\frac{1}{2}}\)
đến đây là ra rùi ha
Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)
\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)
\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)
\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)
\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)
chịuiuiuiuiuiuiuiuiuiuiuiu