cho a,b,c là các số tự nhiên thỏa mãn 1/a + 1/(a+b) + 1/(a+b+c) = 1 , tính a,b,c
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
30 tháng 7 2019
Nhân 2 vế của 2 ĐT đề bài ta có
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)
<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)
=>\(P=\frac{17}{10}\)
Vậy \(P=\frac{17}{10}\)
DC
1 tháng 2 2017
ab-ac+bc-c2=b(a+c)-c(a+c)=(b-c)(a+c)
=>\(\orbr{\begin{cases}b=c+1,a=-1-c\\b=c-1,a=1-c\end{cases}}\)
\(\Leftrightarrow\frac{a}{b}=-1\)