K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NV
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
15 tháng 9
Lời giải:
a+1\vdots b$
$\Rightarrow 2b+5+1\vdots b$
$\Rightarrow 2b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại)
Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn)
Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại)
Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn)
Vậy.........
26 tháng 7 2021
Vì \(\left|a\right|\le1;\left|b-1\right|\le2\)
\(=>\left|a\right|\cdot\left|b-1\right|=\left|ab-a\right|\le2\)
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) ta có:
\(\left|a-c+ab-a\right|\le\left|a-c\right|+\left|ab-a\right|=2+3=5\)
\(=>\left|ab-c\right|\le5\)