Giá trị của m để tiệm cận đứng của đồ thị hàm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Suy ra đồ thị hàm số có 1 đường TCN y = 0.
Do đó đồ thị hàm số có đúng 2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2 - 2 x + 4 = 0 có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn A
Chọn A
Xét m = 0 thì đồ thị hàm số là đường thẳng y = -x là 1 đường thẳng nên không có đường tiệm cận đứng.
Xét m ≠ 0 khi đó đồ thị hàm số không có đường tiệm cận đứng nếu
(khi đó hàm số suy biến có đạo hàm y’ = 0)
Vậy giá trị của m cần tìm là m = 0; m = ±1.
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số có hai tiệm cận đứng?
A. 3
B. 0
C. 2
D. 1
Đáp án C
Phương pháp: Để đồ thị hàm số có tiệm cận đứng x = x 0 thì x 0 là nghiệm của phương trình mẫu mà không là nghiệm của phương trình tử.
Cách giải:
ĐK: x ≥ - 1 và x 2 - ( 1 - m ) x + 2 m > 0
Xét phương trình 1 + x + 1 = 0 vô nghiệm
Xét phương trình x 2 - ( 1 - m ) x + 2 m = 0 (*). Để đồ thị hàmsố có hai TCĐ thì phương trình có 2 nghiệm phân biệt thỏa mãn ĐK x ≥ - 1
Khi đó gọi hai nghiệm của phương trình là x 1 > x 2 ta có:
Kết hợp điều kiện ta có:
Thử lại:
Với
Khi đó hàm số có dạng có 1 tiệm cận đứng x = 4 => Loại
Với
Khi đó hàm số có dạng có 2 tiệm cận đứng x = 1± 3 => TM
Khi
Khi đó hàm số có dạng có 2 tiệm cận đứng x = 0; x = 1 => TM
Vậy
Đáp án D
Dễ thấy hàm số có 1 TCN y = 1.
Để hàm số có 1 TCĐ thì PT x 2 − x − m = 0 phải có 1 nghiệm x = 2 hoặc x= -2.
Vậy m ∈ 2 ; 6
Đáp án D
Đồ thị hàm số có tiệm cận đứng khi
và chỉ khi x = m ≠ − 2
Đáp án A
y = m x − 2 m + 1 x − m = g x x − m ;
Đồ thị hàm số có tiệm cận đứng
⇔ g m ≠ 0 ⇔ m 2 − 2 m + 1 ≠ 0 ⇔ m ≠ 1.
đây mà là lớp 2 á
Ciến thức nân cao .