K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

CM $\frac{1}{2!}+\frac{2}{3!}+...+\frac{n-1}{n!} = \frac{n-1}{n!}$ với $n$ là số tự nhiên thỏa mãn $n\geq 2$

Bạn tham khảo lời giải tại link sau:

https://hoc24.vn/cau-hoi/cho-a122389910so-sanh-a-voi1voi-n123ntich-cua-n-so-tu-nhien-khac-0-dau-tien.3965156752

Áp dụng kết quả trên:

$\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}=\frac{2014!-1}{2014!}<1$

$\Rightarrow \frac{2}{3!}+...+\frac{2013}{2014!}< 1-\frac{1}{2!}=\frac{1}{2}$ 

Ta có đpcm.

29 tháng 9 2015

=1!(2-1)+2!(3-1)+3!(4-1)+4!(5-1)+5!(6-1)

=2!-1!+3!-2!+4!-3!+5!-4!+6!-5!

=6!-1!

=720-1

=719

AH
Akai Haruma
Giáo viên
17 tháng 8 2024

Lời giải:

$3S_n=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+....+\frac{(n+3)-n}{n(n+1)(n+2)(n+3)}$

$=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}$

$=\frac{1}{1.2.3}-\frac{1}{(n+1)(n+2)(n+3)}$

$\Rightarrow S_n=\frac{1}{1.2.3.3}-\frac{1}{3(n+1)(n+2)(n+3)}$

$\Rightarrow S_n=\frac{1}{18}-\frac{1}{3(n+1)(n+2)(n+3)}$

26 tháng 2 2017

4B=1.2.3.4+2.3.4.4+...+(n-1)n(n+1).4

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-[(n-2)(n-1)n(n+1)]

=(n-1)n(n+1)(n+2)-0.1.2.3=(n-1)n(n+1)(n+2)

=>B=(n-1)n(n+1)(n+2)/4

k  nha

26 tháng 2 2017

TRÒ NÀY CÙI RỒI BẠN! (hihi)