CTR:
a, 1/20+1/21+1/22+...+1/49<13/12
b, 1/11+1/12+1/13+...+1/40>13/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính nhanh
19 + 18 + 17 + 16 + 14 + 21 + 22 + 23 + 24 + 25 + 26
1/3 + 1/4 + 1/5 + 4/6 + 9/12 + 16/20
\(19+18+17+16+14+21+22+23+24+25+26\)
\(=\left(19+21\right)+\left(18+22\right)+\left(17+23\right)+\left(16+24\right)+\left(14+26\right)+25\)
\(=30+30+30+30+30+25\)
\(=175\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{4}{6}+\dfrac{9}{12}+\dfrac{16}{20}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)\)
\(\text{=}1+1+1\)
\(\text{=}3\)
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
.............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)
Lời giải:
Ta thấy $B$ có 11 số hạng. Mỗi số hạng phía trước $\frac{1}{22}$ đều lớn hơn $\frac{1}{22}$
Do đó $B> 11.\frac{1}{22}=\frac{1}{2}$ (đpcm)
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.