\(A=\left(100-1^2\right)\left(100-2^2\right)\left(100-3^2\right).....\left(100-25^2\right)TimA\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(100-1\right)\left(100-2^2\right)...\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...\left(100-10^2\right)...\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...\left(100-100\right)...\left(100-50^2\right)\)
\(M=\left(100-1\right)\left(100-2^2\right)...0...\left(100-50^2\right)\)
\(M=0\)
Ta có:
\(\begin{array}{l}M = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).\,\,...\left( {{{10}^2} - {{10}^2}} \right)..\,\,.\left( {100 - {{50}^2}} \right)\\ = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).... 0 ...\left( {100 - {{50}^2}} \right)\\ = 0\end{array}\)
A=(1/100- 1^2). (1/100-(1/2)^2).....(1/100- (1/510)^2).....(1/100-(1/20)^2)
A=(1/100- 1^2). (1/100-(1/2)^2).....(1/100- 1/100).....(1/100-(1/20)^2)
A=(1/100- 1^2). (1/100-(1/2)^2).....0.....(1/100-(1/20)^2)
A=0
Mình ko biết gõ ngoặc vuông bạn thông cảm nha! Chúc bạn học tốt!!!
\(A=\left(100-1\right).\left(100-2^2\right).\left(100-3^2\right)...\left(100-50^2\right)\)
\(A=\left(100-1\right).\left(100-2^2\right).\left(100-3^2\right)......\left(100-10^2\right)......\left(100-50^2\right)\)
\(A=\left(100-1\right).\left(100-2^2\right).\left(100-3^2\right).....0......\left(100-50^2\right)\)
\(A=0\)
Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)
Áp dụng , đặt biểu thức cần tính là A , ta có :
\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)
\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)
Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0
làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc
ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)
=>biểu thức ấy =0
Bài này dễ mà:
A=(100-1^2)(100-2^2)(100-3^2)...(100-10^2)...(100-25^2)
A=(100-1)(100-4)(100-9)...(100-100)...(100-625)
=> A=0
đến giữa dãy số có (100-10^2) đó =>A=0