1/3+1/33+1/35+1/37+...+1/399+1/3101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
`#3107.101107`
\(A=1+3+3^2+3^3+...+3^{101}\)
$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$
$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2) + ... + 3^{99}(1 + 3 + 3^2)$
$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$
$A = 13(1 + 3^3 + ... + 3^{99})$
Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`
`\Rightarrow A \vdots 13`
Vậy, `A \vdots 13.`
\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)
nên \(A\vdots13\)
\(\text{#}Toru\)
Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;
…
Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
`#3107.101107`
\(S=1+3^1+3^2+3^3+...+3^{101}\)
\(3S=3+3^2+3^3+...+3^{102}\)
\(3S-S=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)
\(2S=3+3^2+3^3+3^{102}-1-3-3^2-...-3^{101}\)
\(2S=3^{102}-1\)
\(S=\dfrac{3^{102}-1}{2}\)
Vậy, \(S=\dfrac{3^{102}-1}{2}.\)
3s=3+3^2+3^3+....+3^102
3s-s=2s
2s=3^102-1
s=3^102-1 trên2
Ta có : \(3A=3+3^2+3^3+...+3^{102}\)
Lấy 3A trừ A theo vế ta có :
\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)
\(2A=3^{102}-1\)
\(A=\frac{3^{102}-1}{2}\)
Ta có : 3102 - 1 = 3100 + 2 - 1
= 325.4 + 2 - 1
= 325.4 . 32 - 1
= ....1 . 9 - 1
= ...9 - 1
= ...8
=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)
Vậy chữ số tận cùng của A là 4
Nhân A thêm 3
Lấy 3A - A được 3^102 -1
A = (3^102-1)/2
3^4k có tận cùng là 1
nên A có tận cùng là 0
Lời giải:
Đặt biểu thức là $A$
\(A=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+....+\frac{1}{3^{99}}+\frac{1}{3^{101}}\)
\(3^2.A=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
Trừ theo vế:
\(8A=3-\frac{1}{3^{101}}\Rightarrow A=\frac{3}{8}-\frac{1}{8.3^{101}}\)
Akai Haruma Giáo viên Giúp em câu em gửi trong inb nhé chị
P/s : Sorry bạn chủ tus nhé , mình lượn ngay đây