\(\text{Tìm dư trong phép chia đa thức:}\)
\(\text{f(x)+x}^{1994}+x^{1993}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)
= x^1992.(x^2+x+1)-(x^1992-1)
Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1
Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)
=> x^1992-1 chia hết cho x^2+x+1
=> f(x) chia hết cho x^2+x+1
=> dư trong phép chia trên là 0
k mk nha
f(x) = (x^1994+x^1993+x^1992) - (x^1992-1)
= x^1992.(x^2+x+1)-(x^1992-1)
Vì x^2+x+1 chia hết cho x^2+x+1 nên x^1992 .(x^2+x+1) chia hết cho x^2+x+1
Lại có : x^1992-1 = (x^3)^664 - 1^664 chia hết cho x^3-1 = (x-1).(x^2+x+1)
=> x^1992-1 chia hết cho x^2+x+1
=> f(x) chia hết cho x^2+x+1
=> dư trong phép chia trên là 0
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
Gấp nha,gấp nha!!