K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

Ta có A = \(\frac{4}{3.7}+\frac{4}{7.11}+..............+\frac{4}{107.111}\)

=> A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.............+\frac{1}{107}-\frac{1}{111}\)

A = \(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)

k nha bạn

16 tháng 8 2016

\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(\Rightarrow=\frac{1}{3}-\frac{1}{111}\)

\(=\frac{12}{37}\)

k nha

16 tháng 8 2016

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(=\frac{1}{3}-\frac{1}{111}\)

\(=\frac{108}{333}=\frac{12}{37}\)

14 tháng 3 2016

4x(\(\frac{1}{3.7}+...+\frac{1}{107.111}\) )

4(\(\frac{1}{3}-\frac{1}{7}+...+\frac{1}{107}-\frac{1}{111}\))

4(\(\frac{1}{3}-\frac{1}{111}\))

4.\(\frac{12}{37}\)

48/37

5 tháng 5 2016

\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)

\(A=\) \(4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{107.111}\right)\)

\(A=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)

\(A=4\left(\frac{1}{3}-\frac{1}{111}\right)\)

\(A=4.\frac{12}{37}\)

\(A=\frac{48}{37}\)

8 tháng 5 2016

lớp 6ha

 

24 tháng 4 2016

NHAN A VOI 3 RUI TU TINH

DỄ MÀ

24 tháng 4 2016

4A=\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)

4A=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)

4A=\(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)

A=\(\frac{12}{37}:4=\frac{12}{37}.\frac{1}{4}=\frac{3}{37}\)

Ta có:

\(C=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{40.41}+\frac{2}{41.42}\)

\(\Rightarrow C=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{40.41}+\frac{1}{41.42}\right)\)

\(\Rightarrow C=2\left(\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{41-40}{40.41}+\frac{42-41}{41.42}\right)\)

\(\Rightarrow C=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{40}-\frac{1}{41}+\frac{1}{41}-\frac{1}{42}\right)\)

\(\Rightarrow C=2.\left(\frac{1}{3}-\frac{1}{42}\right)=\frac{13}{21}\)

\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(\Rightarrow D=\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{111-107}{107.111}\)

\(\Rightarrow D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}=\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)\(E=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(\Rightarrow E=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(\Rightarrow E=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}+\frac{11-10}{10.11}\)

\(\Rightarrow E=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)

19 tháng 8 2016

\(A=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{95.99}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

11 tháng 3 2015

 

Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\) 

             \(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)

             ..........................

             \(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)

=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)

=>                                                       =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)

14 tháng 7 2017

Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)

\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)

2 tháng 8 2017

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)

\(B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

Vậy giá trị của biểu thức \(B=\frac{32}{99}\)

2 tháng 8 2017

Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.....+\frac{4}{95.99}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

15 tháng 7 2017

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)

\(=\frac{8}{27}\)

15 tháng 7 2017

Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}\)

\(=\frac{8}{27}\)