Chứng tỏ rằng phân số 6n+3/9n+4 tối giản (n thuộc N).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
A = \(\dfrac{8n+3}{6n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 8n + 3 và 6n + 2 là d
Ta có: \(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(8n+3\right)⋮d\\4.\left(6n+2\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
⇒ 24n + 9 - (24n + 8) ⋮ d
⇒ 24n + 9 - 24n - 8 ⋮ d ⇒ 1 ⋮ d ⇒ d = 1
Vậy A = \(\dfrac{8n+3}{6n+2}\) là phân số tối giản (đpcm)
Theo bài ra , ta có :
\(\frac{6n-7}{n-1}=\frac{6n-6-1}{n-1}=\frac{6\left(n-1\right)-1}{n-1}=\frac{6\left(n-1\right)}{n-1}-\frac{1}{n-1}=6-\frac{1}{n-1}\)
Mà \(\frac{1}{n-1}\)là phân số tối giản
\(\Rightarrow6-\frac{1}{n-1}\)là p/s tối giản
\(\Rightarrow\frac{6n-7}{n-1}\)là phân số tối giản (ĐPCM)
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a) Với bất kì n khác -1/2
b) Đặt UCLN(3n + 2 ; 6n + 3) = d
3n + 2 chia hết cho d => 6n + 4 chia hết cho d
=> (6n + 4 - 6n - 3) chia hết cho d
1 chia hết cho d => d = 1
Vậy A ...............
Giải:
Gọi (6n + 3, 9n + 4) = d
Ta có:
6n + 3 chia hết cho d
9n + 4 chia hết cho d
=> 4(6n + 3) chia hết cho d => 24n + 12 chia hết cho d
=> 3(9n + 4) chia hết cho d => 27n + 12 chia hết cho d
Mà 24n và 27n là hai số nguyên tố cùng nhau có ƯCLN = 1
=> 1 chia hết cho d => d = 1
Vì 6n + 3 và 9n + 4 là hai số nguyên tố cùng nhau nên phân số \(\frac{6n+3}{9n+4}\) là phân số tối giản (điều cần chứng minh)
(Nhắc nhở một tí: Nếu bạn muốn chứng minh các số dạng n mà là phân số thì bạn hãy chứng minh tử số và mẫu số là hai số nguyên tố cùng nhau, "làm xong ủng hộ")
Giải:
Gọi (6n + 3, 9n + 4) = d
Ta có:
6n + 3 chia hết cho d
9n + 4 chia hết cho d
=> 4(6n + 3) chia hết cho d => 24n + 12 chia hết cho d
=> 3(9n + 4) chia hết cho d => 27n + 12 chia hết cho d
Mà 24n và 27n là hai số nguyên tố cùng nhau có ƯCLN = 1
=> 1 chia hết cho d => d = 1
Vì 6n + 3 và 9n + 4 là hai số nguyên tố cùng nhau nên phân số \(\frac{6n+3}{9n+4}\) là phân số tối giản (điều cần chứng minh)