K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

7 Hằng đảng thức :

(a+b)2 = a2 + 2ab+b2

(a-b)2 = a2 - 2ab+b2

a2 -b2=(a+b)(a-b)

(a+b)3 = a3 + 3a2b + 3ab+b3

(a-b)3 = a3 - 3a2b + 3ab2 -b3 

giải quyết giùm mk mk thì tích bn nhìu r đó

14 tháng 3 2016

??????????????????

17 tháng 3 2016

 (a – b)(an – 1 + an – 2b + an – 3b2 + ··· + abn – 2 + bn – 1)

17 tháng 3 2016

=(a-b)n

19 tháng 5 2016

(a+b)(a-b)

19 tháng 5 2016

\(\left(a-b\right)\left(a^{n-1}+a^{n-2}b...+a^{n-3}b^2+...+a^2b^{n-3}+ab^{n-2}+b^{n-1}\right)\)

7 tháng 11 2016

Tong sách trong vở lật ra là thấy 

Chúc bn học giỏi 

^_^ T_T

7 tháng 11 2016

1 binh phuong cua mot tong

2 binh phuong cua mot hieu

3 hieu 2 binh phuong

4 lap phuong cua mot tong

5 lap phuong cua mot hieu

6 tong 2 lap phuong

7 hieu hai lap phuong

1 tháng 2 2020
  1. Bình phương của 1 tổng: (a + b)2 = a2 + 2ab + b2 = (a - b)2 + 4ab
  2. Bình phương của 1 hiệu: (a - b)2 = a2 - 2ab + b2 = (a + b)2 - 4ab
  3. Hiệu 2 bình phương: a2 - b2 = (a - b)(a + b)
  4. Lập phương của 1 tổng: (a + b)3 = a3 + 3a2b + 3ab2 + b3
  5. Lập phương của 1 hiệu: (a - b)3 = a3 - 3a2b + 3ab2 - b3
  6. Tổng 2 lập phương: a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
  7. Hiệu 2 lập phương: a3 - b3 = (a - b)(a2 + ab + b2) = (a - b)3 + 3a2b - 3ab2 = (a - b)3 + 3ab(a - b)

Nguồn: Wikidepia

Chúc bạn học tốt !!!

1 tháng 2 2020

Toán này là toán lớp 8 mà !!!!!!!!!!!!

=370^2-4=136896

3 tháng 9 2017

lật sách ra nha bn

23 tháng 10 2017
  1. Bình phương của một tổng:
    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
  2. Bình phương của một hiệu:
    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
  3. Hiệu hai bình phương:
    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
  4. Lập phương của một tổng:
    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
  5. Lập phương của một hiệu:
    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
  6. Tổng hai lập phương:
    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
  7. Hiệu hai lập phương:
    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}
     
    cach-hoc-bang-cuu-chuong-moi
    Despacito!
23 tháng 10 2017

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

a^2-b^2=(a-b)(a+b)

(a+b)^3=a^3+3a^2b+3ab^2+b^3

(a-b)^3=a^3-3a^2b+3ab^2-b^3

a^3+b^3=(a+b)(a^2-ab+b^2)

a^3-b^3=(a-b)(a^2+ab+b^2)

CHUC BN HOC TOT -^-
 

25 tháng 3 2016

đề đúng không vậy bạn?