K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Câu a :

Theo BĐT cauchy schwar ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{9}{x+y+z}\right)\ge9\)

Câu b : Sửa lại đề nha :

Theo BĐT cauchy schwar ta có :

\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\dfrac{9}{\left(a+b+c\right)^2}\)

\(a+b+c\le\Rightarrow\left(a+b+c\right)^2\le1\)

\(\Rightarrow\) \(\dfrac{9}{\left(a+b+c\right)^2}\ge9\)

24 tháng 4 2018

Mơn 😊

14 tháng 2 2020

Bài 2:

a, |x-1| -x +1=0

|x-1| = 0-1+x

|x-1| = -1 + x

 \(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)

 \(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)

 \(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)

x = 2-x

2x = 2

x = 2:2

x=1

b, |2-x| -2 = x

|2-x| = x+2

\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)

2-x = x+2

x+x = 2-2

2x = 0

x = 0

14 tháng 10 2021

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

2 tháng 6 2017

Câu 2: \(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)^2=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+2\left(x^2+y^2+z^2\right)\)

\(=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+6\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\sqrt[3]{\left(\frac{xy}{z}\right)^2\left(\frac{yz}{x}\right)^2\left(\frac{xy}{y}\right)^2}=3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^2}}=3\)\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge\sqrt{3+6}=3\left(dpcm\right)\)

3 tháng 6 2017

tại sao lại suy ra đc \(3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^{^2}}}=3\) vậy cậu?

16 tháng 2 2020

tu lam

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

31 tháng 3 2015

1) \(VT=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{x}{z}+\frac{y}{z}+\frac{z}{z}\)

\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\)

Với 2 số a; b dương dễ dàng chứng minh đc: \(\frac{a}{b}+\frac{b}{a}\ge2\) (có thể chứng minh tương đương)

=>  VT \(\ge3+2+2+2=9=VP\)=> ĐPCM

dâu = xảy ra khi x = y = z

2) Xét \(M+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(M+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(M+3=\frac{1}{2}.\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(M+3=\frac{1}{2}.\left(\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{1}{2}.9=\frac{9}{2}\)(Áp dụng câu 1)

=> M \(\ge\frac{9}{2}-3=\frac{3}{2}\)

min M = 3/2 khi a= b = c