cho
A=1/2^2+1/3^2+1/4^2+...+1/100^2.CMR A<3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)
\(A = \dfrac{1}{2^2} + \dfrac{1}{4^2} +\dfrac{1}{6^2} +...... +\dfrac{1}{100^2} \)
\(A = \dfrac{1}{1^2.2^2} +\dfrac{1}{2^2.2^2} +\dfrac{1}{2^2.3^2} + .......+\dfrac{1}{2^2.2^{50}}\)
\(A = \dfrac{1}{2^2}.(\) \( \dfrac{1}{1^2} + \dfrac{1}{2^2} +\dfrac{1}{3^2} +...... +\dfrac{1}{50^2}) \)
\(A < \dfrac{1}{2^2}.( \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{49.50}\) \()\)
\(= \dfrac{1}{2^2}.(1-\dfrac{1}{2} + \dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{49}-\dfrac{1}{50})\)
\(= \dfrac{1}{2^2} . ( 1 - \dfrac{1}{50})\)
\(< \dfrac{1}{2^2} . 2 = \dfrac{1}{2}\)