Tìm các cặp số nguyên x;y sao cho (x+1)2+(y+1)2+(x-y)2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
IxI >=0 với mọi x thuộc Z
IyI >=0 với mọi x thuộc Z
=> IxI+IyI >=0 với ọi x,y thuộc Z
Mà -5<0 => Không tồn tại giá trị x,y thỏa mãn đề bài
Lời giải:
$xy=x-y$
$\Rightarrow xy-x+y=0$
$\Rightarrow x(y-1)+(y-1)=-1$
$\Rightarrow (x+1)(y-1)=-1$
Với $x,y$ nguyên thì $x+1, y-1$ nguyên. Mà tích của chúng bằng -1 nên ta xét các TH sau:
TH1: $x+1=1, y-1=-1\Rightarrow x=0; y=0$
TH2: $x+1=-1, y-1=1\Rightarrow x=-2; y=2$
Ta có :
xy = 2x + 2y
=> xy = 2(x+y)
do 2(x+y) là số chẵn => xy là số chẵn => x hoặc y là số chẵn mà x,y là số nguyên tố
=> \(\orbr{\begin{cases}x=2\Rightarrow2y=4+2y\Rightarrow0=4< L>\\y=2\Rightarrow2x=2x+4\Rightarrow0=4< L>\end{cases}}\)
Vậy không có giá trị x,y nào thỏa mãn
\(xy-x-y=2\)
\(\Rightarrow xy-x-y+1=3\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Tự xét được chứ :">
\(x-y+2xy=3\)
\(\Leftrightarrow4xy+2x-2y-1=5\)
\(\Leftrightarrow\left(2x-1\right)\left(2y+1\right)=5\)
Mà \(x,y\)là số nguyên nên \(2x-1,2y+1\)là các ước của \(5\).
Ta có bảng giá trị:
2x-1 | -5 | -1 | 1 | 5 |
2y+1 | -1 | -5 | 5 | 1 |
x | -2 | 0 | 1 | 3 |
y | -1 | -3 | 2 | 0 |
Vậy phương trình có các nghiệm là: \(\left(-2,-1\right),\left(0,-3\right),\left(1,2\right),\left(3,0\right)\).
\(2\left(xy-3\right)=x\)
\(\Leftrightarrow2xy-6=x\)
\(\Leftrightarrow2xy-x=0+6\)
\(\Leftrightarrow x\left(2y-1\right)=6\)
\(\Rightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow y\in\left\{....\right\}\)
xy+3y+x=2
(3+x)y+x=2
(3+x)y+(x+3)=5
(3+x)(y+1)=5
...............tự giải tiếp
Lời giải:
$(x+1)^2+(y+1)^2+(x-y)^2=2$
Vì $(y+1)^2, (x-y)^2\geq 0$ nên:
$(x+1)^2=2-(y+1)^2-(x-y)^2\leq 2$
Mà $(x+1)^2$ là scp nên $(x+1)^2=0$ hoặc $(x+1)^2=1$
TH1: $(x+1)^2=0\Rightarrow x=-1$
Khi đó: $(y+1)^2+(-1-y)^2=2$
$\Rightarrow 2(y+1)^2=2\Rightarrow (y+1)^2=1$
$\Rightarrow y+1=1$ hoặc $y+1=-1$
$\Rightarrow y=0$ hoặc $y=-2$ (thỏa mãn)
TH2: $(x+1)^2=1\Rightarrow x+1=1$ hoặc $x+1=-1$
$\Rightarrow x=0$ hoặc $x=-2$
Nếu $x=0$ thì:
$1+(y+1)^2+(-y)^2=2$
$\Rightarrow 2y^2+2y=0$
$\Rightarrow 2y(y+1)=0\Rightarrow y=0$ hoặc $y=-1$
Nếu $x=-2$ thì:
$1+(y+1)^2+(-2-y)^2=2$
$\Rightarrow 2y^2+6y+4=0$
$\Rightarrow y^2+3y+2=0$
$\Rightarrow (y+1)(y+2)=0\Rightarrow y=-1$ hoặc $y=-2$
Vậy $(x,y)=(-1,0), (-1,-2), (0,0), (0,-1), (-2, -1), (-2,-2)$