K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2021

Giải ntn ạ

15 tháng 7 2021

a) Trong (O) có AB là dây cung không đi qua O và I là trung điểm AB

\(\Rightarrow OI\bot AB\Rightarrow\angle MIO=90\Rightarrow\angle MIO+\angle MCO=90+90=180\)

\(\Rightarrow MIOC\) nội tiếp

b) Vì MC,MD là tiếp tuyến \(\Rightarrow\Delta MCD\) cân tại M có MO là phân giác \(\angle CMD\) \(\Rightarrow MO\bot CD\) mà \(EF\parallel CD\) \(\Rightarrow EF\bot MO\)

tam giác MOE vuông tại O có đường cao OC \(\Rightarrow CM.CE=OC^2\)

tam giác MOC vuông tại C có đường cao HC \(\Rightarrow OH.OM=OC^2\)

\(\Rightarrow OH.OM=CM.CE\)

Vì H là trung điểm CD (\(\Delta MCD\) cân tại M) và \(EF\parallel CD\) 

\(\Rightarrow O\) là trung điểm EF

 \(\Rightarrow S_{MEF}=2S_{MOE}=2.\dfrac{1}{2}.OC.ME=OC.\left(CM+CE\right)\)

\(\ge R.\sqrt{CM.CE}=R.2\sqrt{OC^2}=R.2OC=2R^2\)

\(\Rightarrow S_{MEF_{min}}=2R^2\) khi \(CM=CE=R\left(CM.CE=R^2\right)\)

\(\Rightarrow OM=\sqrt{R^2+R^2}=\sqrt{2}R\)

Vậy M nằm trên d sao cho \(OM=\sqrt{2}R\) thì diện tích tam giác MEF nhỏ nhất \(\left(=2R^2\right)\)

undefined

1: Xét (O) có

OH là một phần đường kính

AB là dây

H là trung điểm của AB

Do đó: OH⊥AB

Xét tứ giác MDOH có 

\(\widehat{MDO}+\widehat{MHO}=180^0\)

Do đó: MDOH là tứ giác nội tiếp

1: ΔOAB cân tại O

mà OI là trung tuyến

nên OI vuông góc AB

góc OIM=góc OCM=góc ODM=90 độ

=>O,I,M,D,C cùng thuộc đường tròn đường kính OM

góc DIM=góc MOD

góc CIM=góc COM

mà góc COM=góc DOM

nên góc DIM=góc CIM

=>IM là phân giác của góc CID

6 tháng 6 2021

b) Trong (O) có EF là dây cung không đi qua O và K là trung điểm EF

\(\Rightarrow OK\bot EF\Rightarrow\angle OKM=90=\angle ODM\Rightarrow OKDM\) nội tiếp 

mà theo câu a) MCOD nội tiếp nên M,D,K,O,C cùng thuộc 1 đường tròn

\(\Rightarrow MDKC\) nội tiếp

\(\Rightarrow\angle MKD=\angle MCD=\angle MDC\) (\(\Delta MCD\) cân tại M) \(=\angle MKC\)

\(\Rightarrow KM\) là phân giác \(\angle DKC\)undefined

 

5 tháng 4 2020

a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)

theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)

=> M,D,O,H cùng nằm trên 1đường tròn

b) Theo tính chất tiếp tuyến ta có

MC=MD=> tam giác MDC cân tại M

=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :

\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)

=> CI là phân giác của góc MCD . 

zậy I là tâm  đường tròn nội tiếp tam giác MCD