Đường trục, đường tâm của các khối tròn xoay được vẽ bằng nét gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Phương pháp: Ứng dụng tích phân để tính thể tích khối tròn xoay.
Cách giải: Gắn hệ trục tọa độ Oxy như hình vẽ:
Ta có:
Phương trình đường tròn:
Phương trình parabol:
Thể tích khối cầu
Thể tích khi quay phần tô đậm quanh trục Ox là:
=> Thể tích cần tính
Đáp án B
Thể tích của khối tròn xoay thu được khi quay elip có trục lớn A A ' = 8 , trục nhỏ B B ' = 6 khi quay quanh trục AA’ là V E = 4 3 π . A A ' 2 . B B ' 2 2 = 4 3 π .4.3 2 = 48 π (đvtt).
Thể tích khối tròn xoay thu được khi quay đường tròn O ; B B ' 2 quanh trục AA’ cũng chính là thể tích khối cầu tâm O, bán kính R = 3 . Thể tích đó là
V O ; 3 = 4 3 π R 3 = 4 3 π .3 3 = 36 π (đvtt).
Vậy thể tích khối tròn xoay cần tính là V = V E − V O ; 3 = 48 π − 36 π = 12 π (đvtt)
Đáp án C
Chọn hệ tọa độ Oxy như hình vẽ với O 3 ≡ O , O 2 C ≡ O x , O 2 A ≡ O y .
Ta có
O 1 O 2 = O 1 A 2 − O 2 A 2 = 5 2 − 3 2 = 4 ⇒ O 1 − 4 ; 0 .
Phương trình đường tròn O 1 : x + 4 2 + y 2 = 25.
Phương trình đường tròn O 2 : x 2 + y 2 = 9.
Kí hiệu H 1 là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9, trục Oy: x = 0 khi x ≥ 0 .
Kí hiệu H 2 là hình phẳng giới hạn bởi các đường O 2 : x 2 + y 2 = 9, trục Oy: x=0 khi x ≥ 0 .
Khi đó thể tích V cần tìm chíình bằng thể tích V 2 của khối tròn xoay thu được khi quay hình H 2 xung quanh trục Ox (thể tích nửa khối cầu bán kính bằng 3) trừ đi thể tích V 1 của khối tròn xoay thu được khi quay hình H 1 xung quanh trục Ox.
Ta có V 2 = 1 2 . 4 3 π 3 3 = 18 π (đvtt);
V 1 = π ∫ 0 1 y 2 d x = π ∫ 0 1 25 − x + 4 2 d x = 14 π 3 (đvtt).
Vậy V = V 2 − V 1 = 18 π − 14 π 3 = 40 π 3 (đvtt).
nét đứt